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Dynamic Analysis Process 

Overview 
• NX Nastran is a general purpose Finite Element Analysis 

solver capable of simulating a broad range of 
engineering problems in many different industries. 

• The solver can be run as a stand-alone solver using an 
existing NASTRAN input file or in conjunction with EDS’s 
Finite Element Analysis Pre and Post-Processor, 
FEMAP. 

• NX Nastran 1.0 is analogous with MSC NASTRAN 2001, 
release 9 and runs on Windows NT, 2000, XP, and 2003 
server.  Versions of the stand-alone solver are available 
on various UNIX (HP, Sun, SGI, and IBM) and LINUX 
platforms. 
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Single DOF System 
• Dynamic equation of motion: 

 
   

  m = mass (inertia) 

 

  b = damping (energy dissipation) 

 

  k = stiffness (restoring force) 

 

  p = applied force 

 

  u = displacement of mass 

 

  u = velocity of mass 

  

  ü = acceleration of mass 

 

  u, u, ü and p are time varying in general. 

  m, b, and k are constants 

mü(t) + bu(t) +ku(t) = p(t) ˙ 

˙ 

˙ 

m 

b k 

u(t) 
p(t) 
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Units 

• Fundamental units 

  - Length, L (inch, meter) 

  - Mass, M  (slug, kilogram) 

  - Time, T  (second) 

 

• Fundamental and derived units 
 

- m M 

- b MT-1 

- k  MT-2 

- p MLT-2 

- u L 

- u LT-1 

- ü LT-2 

mü(t) + bu(t) +ku(t) = p(t) ˙ 

˙ 
˙ 
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Units 
 Variable  Dimensions English  Metric 

 Length  L  in  m  

 Mass    M  lb-sec2/in  kg 

 Time   T  sec  sec 

 Area   L2  in2  m2 

 Volume  L3  in3  m3 

 Velocity  LT-1  in/sec  m/sec 

 Acceleration  LT-2  in/sec2  m/sec2 

 Rotation  -  rad  rad 

 Rotational Velocity T-1  rad/sec  rad/sec 

 Rotational Acceleration T-2  rad/sec2  rad/sec2 

 Circular Frequency T-1  rad/sec  rad/sec 

 Frequency  T-1  cps; Hz  cps; Hz 
 

L = Length 

M = Mass 

T = Time 

- = Dimensionless 
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Units 
 Variable  Dimensions English  Metric 

 Eigenvalue  T-2  rad2/sec2  rad2/sec2  

 Phase Angle   -  deg  deg 

 Force   MLT-2  lb  N 

 Weight  MLT-2   lb  N 

 Moment  ML2T-2  in-lb  N-m 

 Mass Density  ML-3  in-sec2/in4  kg/m3 

 Young’s Modulus ML-1T-2  lb/in2  Pa;N/m2 

 Poisson’s Ratio  -  -  - 

 Shear Modulus  ML-1T-2  lb/in2  Pa;N/m2 

 Area Moment of inertia L4  in4  m4 

 Torsional Constant L4  in4  m4 

 Mass Moment of inertia ML2  in-lb-sec2  kg-m2 

 Stiffness  MT-2  lb/in  N/m 

 Viscous Damping Coeff. MT-1  lb-sec/in  N-sec/m 

 Stress  ML-1T-2  lb/in2  Pa: N/m2 

 Strain   -  -  - 
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Single DOF System – Undamped Free 

Vibrations 
• Dynamic equation 

 

• Solution 

 

 

 

 

 

• Initial conditions 

 

 

 

• Finally 

mü(t) + ku(t) = 0 

˙ 

u(t) = A sin ωnt + B cos ωnt  

ωn =         = natural frequency (rad/sec) 

 

fn =    = natural frequency (cycles/sec) 

k 

m 

ωn 

2π 

B = u (t = 0)  

A =      (t = 0)  
u 

ωn 

˙ 
u(0) and u(0) are known ˙ 

u(t) =       sinωnt + u(0)cosωn 

u(0) 

ωn 

˙ 
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Single DOF System – Undamped Free 

Vibrations 

˙ 

Time 

Displacement 

SDOF Oscillator – Nonzero initial conditions 
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Single DOF System – Damped Free 

Vibrations 
• Dynamic Equation 

 

• Critical Damping 

 

• Initial conditions 

 
• The amount of damping determines the form of the solution 

– Underdamped 

 

 

 

 Damped Natural Frequency: 

bc = 2    km = 2mωn 

b 

bc 

mü(t) + bu(t) +ku(t) = 0 ˙ 

ξ = 

b < bc 

u(t) = e-bt/2m(A sinωdt + B cosωdt) 

ωd = ωn     1 – ξ2 
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Single DOF System – Damped Free 

Vibrations 
• Critically damped 

 

• No oscillation occurs 

 

• Overdamped 

 

 

– No oscillation occurs.  The system gradually returns to Equilibrium (at rest, 

undisplaced) position. 

• The usual analysis case is underdamped 

• Structures have viscous damping in the 0-10% range 

u(t) = (A + Bt)e-bt/2m 

b = bc 

b > bc 
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Single DOF System – Damped Free 

Vibrations 

˙ 

Time (seconds) 

Displacement 
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Single DOF System – Undamped Sinusoidal 

Vibrations 
• Dynamic Equation 

 

– Where ω = forcing frequency 

• Solution 

 

 

 

 

 

 

• Steady-state Solution 

– P/k is the static response 

–        1  is the dynamic magnification factor 

mü(t) +ku(t) = P sinωt 

u(t) = A sinωdt + B cos ωdt + 
P/k 

1-ω2/ ωn
2 

sinωt 

Initial Conditions Steady-State 

where 
u(t=0) 

ωn
 B = u(t=0) A =              - 

ωP/k 

(1-ω2/ ωn
2)ωn 

1-ω2/ ωn
2 
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Magnification factor 

˙ 

Frequency ((0.5)*Hz) 
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Single DOF System – Damped Sinusoidal 

Vibrations 
• Dynamic Equation 

 

• Transient solution decays rapidly and is of no interest 

 

• Steady-state Solution 

 

 

 

 

 

• θ is phase lead 

u(t) = P/k 

(1-ω2/ ωn
2)2 + (2ξω/ωn)

2 

θ = - tan-1  
2ξω/ωn 

(1-ω2/ ωn
2) 

mü(t) + bu(t) +ku(t) = P sin ωt ˙ 

sin (ωt + θ) 
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Single DOF System – Damped Sinusoidal 

Vibrations 
• For         >> 1 

 

– Magnification factor  1(Static Solution) 

– Phase angle 360°(Response is in phase with the force) 

 

• For         << 1 

 

– Magnification factor  0 (No Response) 

– Phase angle 360°(Response has opposite sign of force) 

 

• For         ≈ 1 

 

– Magnification factor  1/2ξ 

– Phase angle 270° 

ω 

ωn 

ω 

ωn 

ω 

ωn 



Page 18 of 255 

Multi-Degree of Freedom System 
• The equation becomes: 

 

 

 

– Where: {u}  = Displacement 

[M]  = Mass Matrix 

[B]  = Damping Matrix 

[K]  = Stiffness Matrix 

{P}  = Forcing function 

 

 

[M]{ü} + [B]{u} + [K]{u} = {P} ˙ 
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Classification of Dynamic 

Environments 

Deterministic Random 

Simple 

Harmonic 

Periodic Transient 

Shock 

Spectra 

Stationary Nonstationary 

Ergodic 
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NX Nastran Dynamic Excitations 

Pulse Sinusoidal 

Transient Random 
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Finite Element Dynamic  

Modeling Considerations 

• Frequency Range 

 

• Grid Points/constraints/elements 

 

• Linear versus nonlinear behavior 

 

• Interaction with adjacent media 

 

• Test/measured data integration 

 

• Damping 
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Dynamics Modeling Input 

NX Nastran Dynamic Analysis 
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NX Nastran Input File Setup 

• FMS and NASTRAN Statements – File allocation and system call 

 

• Executive Control Section – Solution type, time allowed, system 

diagnostics 

• CEND – Required Delimiter Entry 

 

• Case Control Section – Output requests, selects certain Bulk Data 

items 

 

• BEGIN BULK – Required Delimiter Entry 

 

• Bulk Data Section – Structural Model definition, solution conditions 

 

• ENDDATA – Required Delimiter Entry 
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Finite Element Analysis 

• Real World is not comprised of only SDOF systems!  

• Finite Elements are used to model the mass, damping, and stiffness 

of complex systems and structures. 

• Degrees of freedom (DOF) are independent coordinates that 

describe the motion of the structure at any instant in time. 

• GRIDs are used to model the continuous structire as a discrete 

entity. 

• Each GRID may have six DOFs: 3 in translation directions (X, Y, 

and Z) and 3 in rotation about the X, Y, and Z axes. 

 

 

 

• Book-keeping is done via the matrices that define the relationships 

between the DOFs. 

y 

x 
z 

Time 1 Time 2 

1 
2 
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Commonly Used Elastic Elements 
One-Dimensional Geometry 

  ROD Pin-ended rod   

 BAR Prismatic beam 

  BEAM Straight beam with warping 

  BEND Curved beam, pipe, or elbow 

Two-Dimensional Geometry 

  TRIA3 Triangular plate   

 QUAD4 Quadrilateral plate 

  SHEAR 4-sided shear panel 

  TRIA6 Triangular plate with midside nodes 

  QUAD8 Quadrilateral plate with midside nodes 

Three-Dimensional Geometry 

  HEXA Solid with six quadrilateral faces 

  TETRA Solid with four triangular faces 

  PENTA Solid with two triangular faces and three  

   quadrilateral faces 

Zero-Dimensional Geometry 

  ELAS Simple spring connecting two degrees of freedom 

 

Number of DOFs 

  4

 12 

  12 

  12

 

 15 

  20 

  8 

  30 

  40 

 

  24-60 

  12-30 

  18-45 

 

 

  2 
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Commonly Used Elastic Elements 

Use the Model -> Property 

command and in the Define 

Property dialog box, click 

Elem/Property Type Button.  The 

desired Element/Property Type 

can then be chosen from the 

dialog box. 
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Coupled vs. Lumped Mass 

• Coupled mass is generally more accurate than lumped mass. 

• Lumped mass is preferred for computational speed in dynamic 

analysis 

• User-selectable coupled mass matrix for elements 

• PARAM, COUPMASS, 1 to select coupled mass 

• The Default is lumped mass 

• Elements which have either lumped or coupled mass: 

• BAR, BEAM, CONROD, HEXA, PENTA, QUAD4, QUAD8, ROD, TETRA, 

 TRIA3, TRIA6, TRIAX6, TUBE 

• Elements which have lumped mass only: 

• CONEAX, SHEAR 

• Elements which have coupled mass only: 

• BEND, HEX20 
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Coupled vs. Lumped Mass 

• Lumped mass contains only diagonal, translational components (no 

rotational components). 

• Coupled mass contains off-diagonal translational components, as 

well as, rotations for BAR (no torsion), BEAM, and BEND elements. 
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ROD Finite Element 

AE 

L 

k = 

0 

1 3 

2 4 

L 

-AE 

L 

0 

-AE 

L 

0 

AE 

L 

0 

GJ 

L 

0 

-GJ 

L 

0 

-GJ 

L 

0 

GJ 

L 

0 

m = ρAL 

0 0 

Iρ 

3A 

0 0 

Stiffness Matrix: 

1/3 1/6 

Iρ 

6A 

0 0 

Iρ 

6A 

0 0 1/6 1/3 

Iρ 

3A 

Classical consistent Mass: 

Length, L 

Area, A 

Torsional Constant, J 

Young’s Modulus, E 

Shear Modulus, G 
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ROD Finite Element 

m = ρAL 
0 0 0 

0 0 1/2 0 

0 0 0 1/2 

NX Nastran Lumped Mass: 

0 

0 0 0 0 

m = ρAL 
0 0 0 

0 0 5/12 

0 0 5/12 

NX Nastran Coupled Mass: 

0 

0 0 0 0 

1/12 

1/12 

The translational terms represent the average of lumped mass and classical consistent 

mass.  This average is best for ROD and BAR elements. 
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Justification of Nastran  

Coupled Mass Convention 

Single Element L 

1 

2 

u(t) 

Consider a fixed-free rod: 

Exact quarter-wave natural frequency: 

ω1/4 =  
π    E/ρ  

2L  
= 1.5708 

E/ρ  

L  
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Justification of Nastran  

Coupled Mass Convention 
Different approximations 

 

- Lumped Mass 

 

 

 

- Classical consistent mass 

ωL =  

E/ρ  

L  
= 1.414 

E/ρ  

L  
2  (-10%) 

ωL =  

E/ρ  

L  
= 1.732 

E/ρ  

L  
3  (+10%) 

NX Nastran 

 

- Coupled Mass 

ωL =  

E/ρ  

L  
= 1.549 

E/ρ  

L  
12/5  (-1.4%) 
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Mass Units 
• NX Nastran assumes consistent units.  BE CAREFUL!!!! 

• Weight units may be input instead of mass units if this is more 

convenient.  The PARAM,WTMASS must then be used to convert 

them to mass. 

• Weight-to-mass conversion: 

 

 

• PARAM,WTMASS, factor performs conversion with factor = 1/G 

 The default value for the factor is 1.0 

• Example 

– Input RHO (ρ) = 0.3 for weight density 

– Use PARAM,WTMASS,0.00259 (1/386.4) to multiple 0.3 for G = 386.4 

in/sec2 

• PARAM,WTMASS is used once per run and multiples all 

weight/mass input (including MASSi, CONMi, and nonstructural 

mass input).  Use all mass of all weight inputs (Do not mix!!) 

Mass = (1/G)* Weight (G=Gravity Acceleration)  

Mass Density = (1/G) * Weight Density 
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Mass Units 
• Material Density 

– MATi entries 

 

 

 

– Select Model->Material and this dialog box will appear 
 

MID MAT1 NU G E RHO A TREF GE 

2 1 5 4 3 6 7 8 9 10 
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Mass Units 
• Nonstructural mass 

– Mass input on element property entry which is not associated with geometric 

properties of the element.  Input as mass/length for line elements and mass/area 

for elements with 2-D geometry 

– Select Model->Property…click Elam/Property Type button.  Select plate element 

and this dialog box will appear. 
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Mass Units 
• Scalar Mass 

• CMASSi, PMASS 

– Grid point mass 

• CONM1 (6 x 6 mass matrix) – User defines half of the terms, symmetry is 

assumed. 

Select Model->Property…click Elem/Property Type button. 

Select Mass Matrix and this dialog box will appear   
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Mass Units 
  • CONM2 (concentrated mass) 

 

 

 

 

 

M 

M 

M 

I11 

I22 

I33 -I32 -I31 

-I21 

SYM 

Select Model->Property…click 

Elem/Property Type button. 

Select Mass and this dialog  

box will appear: 
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Basic NX Nastran Set Operations 
• See the NX Nastran Quick Reference Guide 

Grid Set (G) = N + M 

   M – Multipoint Constraints 

 

Independent DOF (N) = F + S 

   S – Single Point Constraints 

 

Unconstrained DOF (F) = A + O 

   O – Static Condensation, Guyan or CMS 

 

Analysis Set A = L + R 

   R – Free-Body Partitioning 

 

Solve A-Set Modes 

 

 

Reverse Process for Data Recovery to G-Set 
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Tips on Model Verification 
• PARAM,GRDPNT,V1 (V1 > 0) 

 

• Grid point weight generator 

 

• PARAM,USETPRT, V1 (V1 = 0,1,2) 

 

• NX Nastran set tables 

 

• As always, engineering judgment 
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Normal Modes Analysis 

NX Nastran Dynamic Analysis 
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Natural Frequencies and Normal Modes 
▪ Determine the dynamic characteristics of the structure 
 

- For instance, suppose a piece of rotating machinery, such as a motor, is 

mounted on a structure.  The running motor will produce a frequency that 

may be close to one of the natural frequencies of the structure.  The motor’s 

frequency may “excite” the structure and create excessive vibration. 

 

- Sometimes static loads can be subject to dynamic amplification 

 

- Natural frequencies and normal modes are often used as a base or a guide 

to subsequent dynamic analysis (transient response, response spectrum), 

such as what should be the appropriate Δt for integrating the equation of 

motion in transient analysis. 

 

- Transient analysis can also take advantage of normal modes and natural 

frequencies using a technique known as modal expansion 
 

- Can be used to guide placement of accelerometers in physical testing 



Page 42 of 255 

Theoretical Results 
▪ Start with this equation: 
     

   [M] { x } + [K] { x } = 0      (1) 

 

▪ Assume a harmonic solution: 
     

   { x } = {Φ}eiωt    (2)  

 

(Physically, this means that all the coordinates are in synchronous 

motion and the system configuration does not change shape during 

motion, only amplitude) 

 

▪ From the harmonic solution equation: 

     

   { x } = - ω2{Φ}eiωt  (3) 

¨ 

¨ 
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Theoretical Results 
▪ Through substitution of (2) and (3) into equation (1) 
     

   -ω2 [M] {Φ}eiωt + [K] {Φ}eiωt = 0 

 

▪ That equation simplifies to: 
     

   ([K] - ω2 [M]) {Φ} = 0 (4)  

 

▪ This is an Eigenvalue problem 

¨ 
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Theoretical Results 
▪ From equation (4) there are two possible solutions: 

 If det ([K] - ω2 [M]) ≠ 0, the only possibility, from equation (4), is 

  

 {Φ} = 0 

 

 which produces a so-called “trivial” solution and will not reveal 

 anything about the behavior of the system from a physical   

 perspective 

 

 If the det ([K] - ω2 [M]) = 0, there is a “non-trivial” solution for {Φ} 

 

▪ The Eigenvalue problem reduces to solving: 

 

 det ([K] - ω2 [M]) = 0 or  det ([K] - λ [M]) = 0 

 

 where  λ = ω2  

 



Page 45 of 255 

Theoretical Results 
▪ If the structure has N dynamic degrees of freedom (with mass), 

there are N number of ω’s that are solutions to the Eigenvalue 

problem. 

 - These ω’s (ω1, ω2, …, ωN) are the natural frequencies of the  

    structure, sometimes referred to as: 

  • Characteristic Frequencies 

  • Fundamental Frequencies 

  • Resonance Frequencies 

 
▪ The eigenvector {Φj} associated with the natural frequency ωj is 

called the normal mode or mode shape 

 - The normal mode corresponds to deflated shape patterns of the 

    structure 

 

▪ When a structure is vibrating, its shape at any time is a linear 

combination of its normal modes. 
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Theoretical Results 
▪ Example 

Simply Supported Beam 

▪ Example plots of the first three modes: 

 

- Mode 1 

 

 

- Mode 2 

 

 

- Mode 3 

ω1 

ω2 

ω3 
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Facts Regarding Normal Modes 
▪ When [K] and [M] are symmetric and real (this is true for all the 

standard structural finite elements), the following orthogonality 

property holds: 

 

   {Φi}
T[M]{Φj} = 0 If i≠j 

and 

   {Φi}
T[K]{Φj} = 0 If i≠j 

also 

    {Φi}
T[K]{Φj}  

    {Φi}
T[M]{Φj}  

fj (hertz) =  

ωj (radians/second)   

2π  

▪ The natural frequencies (ω1, ω2, …) are expressed in 

radians/second.  They can also be expressed in hertz 

(cycles/second) using:  

ωj
2  = 
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Facts Regarding Normal Modes 
- For Example the system below is unconstrained and 

has a rigid-body mode 

m 

x2 

k 

m 

x1 

ω1 = 0 {Φ1} = 

1 

1 

▪ When a structure is not fully constrained, meaning it will exhibit a    

“rigid-body” mode (stress free mode) or a mechanism, at least one 

natural frequency will be zero. 
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Facts Regarding Normal Modes 
▪ Scaling of normal modes is arbitrary.  For instance: 

m 

m 

x1 

x2 

{Φ1} = 

1 

0.5 

, {Φ1} = 

300 

150 

, and {Φ1} = 

0.66 

0.33 

All represent the same mode of vibration 
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Facts Regarding Normal Modes 
• FFor practical considerations, modes should be normalized by a 

chosen convention.  In NX Nastran there are three normalization 

choices (except when using the Lanczos method) 

 

• TThe unit value of generalized mass (default) 

 

  {Φi}
T [M]{Φi} = 1.0 

 

• TThe unit value of the largest A-set component in each mode 

• TThe unit value of a specific component (not recommended) 

 

• IIn Lanczos method, normalization is to a unit value of generalized 

mass or to a unit value of the largest component. 
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Additional Modal Properties 
• Since strains, internal loads, and stresses develop when a 

structure deforms, additional useful modal information can be 

recovered by utilizing: 

• sStrain-displacement relationships 

{ε} = [Kεu] {u} 

 

• SStress-strain relationships 

{σ} = [Kσε] {ε} 

 

• SStatic force-displacement relationships 

{Pst} = [K] {u} 

 

• EElement strain energy relationships 

Ve = 1/2{ue}T[Kee]{ue} 
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Methods of Computation 
▪ NX Nastran provides the user with three types of 

methods for eigenvalue extraction 

- Tracking Methods 
• Natural Frequencies (Eigenvalues) are determined one at a time using   

  an iterative approach 

• Two variations of the inverse power method are provided using INV  

  and SINV 

• This approach is more convenient when a small number are to be  

  determined 

 - In general, SINV is more reliable than INV 

- Transformation Methods 
       • The original eigenvalue problem 

  

 

          is transformed to the form:  

([K] - λ [M]){Φ} = 0 

[A]{Φ} = λ{Φ} where [A] = [M]-1[K] 
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Methods of Computation 
• Then, the Matrix [A] is transformed into a tri-diagonal matrix using  

  either the Givens technique or the Householder technique 

• Finally, all eigenvalues are extracted at once using the QR algorithm 

• Two variations of both the Givens and the Householder methods are  

  provided for use: 

 - GIV 

 - MGIV 

 - HOU 

 - MHOU 

• These methods are more efficient when a large number of  

  eigenvalues are needed to be extracted 

- Lanczos Method 
       • The newest method, Lanczos is a combined tracking-  

   transformation method 

 - This method is most efficient for computing a few eigenvalues of 

   large, sparse problems 
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Sturm Sequence Theory 
• CChoose λ. 

• FFactor [K – λiM] into [L][D][LT]. 

• TThe number of negative terms on the factor diagonal is the 

number of eigenvalues below λ. 

No. Neg. 

Terms=7 

No. Neg. 

Terms=8 

0.0 

λ8 (must be in range) 
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Lanczos Method 
• Block, shifted, inverted Lanczos 

 

• Random starting vectors 

 

• Automatic shift logic 

 

• Partial and selective othogonalization 

 

• Sturm sequence diagnosis 

 

• Givens plus QL eigensolution 

 

• Can be used for both buckling and normal modes analysis 

 

• Mass and largest component normalize only 



Page 56 of 255 

Creating Analysis Set with Analysis Set 

Manager 
All Analysis cases should be set-up using the Analysis Set Manager.  The 

Analysis Set Manager is accessed using the Model->Analysis command. 

Note: For users of previous versions of FEMAP, the analysis set manager was 

added for version 8.0, it is the recommended way to create an input file. 

Analysis Set Manager – Main Window 

Creates New Set 

Edits Existing Set Information 

Loads Saved Set 

Delete Existing Case 

Copies Existing Case 
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Create Analysis Set 
In Analysis Set Manager dialog box, click the New button. 

The Analysis Set dialog box will appear: 

 Select “2..Normal Modes/Eigenvalue” 

from the Analysis Type drop-down 

menu.  Then click “Next” button 

In the NASTRAN Executive and 

Solution Options dialog box, 

Executive Control options can be 

specified, such as problem ID, 

diagnostics, restarts, or output 

directories.  Also, Solution options 

such as using the iterative solver 

or multiple processors can be 

selected.  Click “Next” button. 
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Create Analysis Set 
The NASTRAN Bulk Data Options dialog box will appear: 

 In the NASTRAN Bulk Data 

Options dialog box, important 

PARAMs for dynamic analysis can 

be specified such as GRDPNT 

and WTMASS.  Also, input file 

formats, plate and beam element 

types (for instance, CQUADR for 

plates with “drilling” degree-of-

freedom), and manual additions to 

the Bulk Data. 

 

PARAMs not in the PARAM 

portion of the dialog box may be 

added to the analysis set using 

the “Manual Control” section of 

the dialog box.  For example, the 

PARAM,USETPRT can be added 

to the NX Nastran analysis “deck” 

by clicking the “Start Text” button, 

and entering PARAM,USETPRT 

in text format.   

Click the “Next” button 
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Creating Analysis Set 
NASTRAN GEOMCHECK Diagnostic specific Dialog Box 

Type of Message to 

alert user in .f06 file 

(Fatal, Warning, or 

Information) 

Message Limit (If 

more than this many 

occur, won’t be 

written to .f06 file) 

Tolerance values 

(different for each 

Test, defaults listed) 

All Tests on/off toggle 
Summary Report Click the “Next” button 
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Special Case Control using FEMAP 
NASTRAN Model Check Dialog Box (Weight Check) 

WEIGHTCHECK is a Case Control 

command used at each stage of the 

mass matrix reduction, compute rigid 

body mass, and compare it with the 

rigid body mass of the G-set 

 

The DOF sets can be chosen from the 

letters G, F, A, V, N, or N +AUTOSPC.  

For further information on DOF sets 

see NX Nastran Quick Reference 

Guide Section about DOF Set 

Definition. 

CGI requests output of center of gravity and mass moment of inertia (Default:CGI=NO) 

 

Ref Node refers to GRID point used for calculation of the rigid body motion. (Default is 

the origin of the basic coordination system.) 

 

Units selects the output in units of weight or mass (Default=WEIGHT) 
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Special Case Control using FEMAP 
NASTRAN Model Check Dialog Box (Ground Check) 

GROUNDCHECK is a Case Control 

command used to perform grounding 

check analysis on stiffness matrix to 

expose unintentional constraints by 

moving the model rigidly. 

 

The DOF sets can be chosen from the 

letters G, F, N, A, or N +AUTOSPC.  

For further information on DOF sets 

see NX Nastran Quick Reference 

Guide Section about DOF Set 

Definition. 

DATAREC refers to data recovery of grounding forces.  (Will Print top “n”% of forces) 

 

Ref Node refers to GRID point used for calculation of the rigid body motion. 

 

Max Strain Energy states what the maximum strain energy that passes the “check”  

(Default value is largest term in the stiffness matrix divided by 1.E10) 
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Create Analysis Set 
The NASTRAN Dynamic Analysis dialog box will appear: 

 In this dialog box, the Modal 

Solution Method can be chosen.   

 

The Frequency range of interest, 

the number of modes to be 

retrieved, the normalization 

method, and the type of mass 

(Lumped or Coupled) can be set. 

 

Also, the Solution type can be set 

to either Direct or Modal for more 

advanced dynamic analysis. 

Click the “Next” button 
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Create Analysis Set 
The NASTRAN XY Output for Modal Analysis dialog box will appear: 

 The NASTRAN XY Output for Modal Analysis 

dialog box appears if you pick the Modal solution 

type on the NASTRAN Dynamic Analysis dialog 

box for the following solution types: Normal 

Modes/Eigenvalue, Random, and Buckling. It also 

applies to Transient Dynamic/Time History and 

Frequency/Harmonic response when the system 

modes are calculated. This dialog box controls the 

type of modal participation information that is 

written to the PRINT output file (*.f06).  

   

If you enter a Reference Node, Nastran will use it 

for the calculation. If you leave the value as 0, 

Nastran will use the origin of the global rectangular 

coordinate system.  FEMAP will read the output 

information into a FEMAP function. In FEMAP, you 

can display this data as an XY plot.  

Click the “Next” button 3 

times 
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Create Analysis Set 
The Boundary Conditions dialog box will appear: 

 
The Boundary Conditions dialog box is 

used to choose the Constraint and Load 

sets to be used in the active analysis set. 

 

Other boundary condition sets such as 

initial conditions, constraint equations, 

and other DOF sets can be chosen in 

this dialog box as well. 

   

Click the “Next” button 
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Create Analysis Set 
The Nastran Output Requests dialog box will appear: 

 The Nastran Output 

Requests dialog box allows 

the user to select what output 

NX Nastran should create for 

post-processing.   

 

Element corner (Guass 

Points) results and Output 

modes can be specified. 

 

Types of results files to 

create (print “f06” files, post-

process “op2” files, punch 

“pch” files, or a combination 

of these output files can be 

selected with the Results 

Destination drop-down menu. Click the “OK” button 
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Problem #1 

Modal Analysis of a Flat Plate 
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Problem #1: Modal Analysis  

of a Flat Plate 
For this problem, use Lanczos method to find the first ten natural frequencies and 

mode shapes of a flat rectangular plate.  Build a finite element representation of 

the rectangular plate.  The plate will be 5 inches by 2 inches and the material and 

element properties are on the next page.  The left side of the plate will be fixed. 
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Problem #1: Modal Analysis  

of a Flat Plate 

Length 

Height 

Thickness 

Weight Density 

Mass/Weight Factor 

Elastic Modulus 

Poisson’s Ratio 

5 in 

2 in 

0.100 in 

0.282 lbs/in3 

2.59E-3 sec2/in 

30.0E6 lbs.in2 

0.3 
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Problem #1: Modal Analysis  

of a Flat Plate 

Mode 1 

Mode 2 

Mode 3 

Mode 4 

Mode 5 

Mode 6 

Mode 7 

Mode 8 

Mode 9 

Mode 10 

133.1684 Hz 

648.7171 Hz 

821.3796 Hz 

2043.021 Hz 

2277.875 Hz 

2357.667 Hz 

3704.534 Hz 

4343.623 Hz 

4762.875 Hz 

5569.165 Hz 

Use these results for comparison: 
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Reduction in Dynamic 

Analysis 

NX Nastran Dynamic Analysis 
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Introduction to Dynamic Reduction 
• Definition 

– Dynamic Reduction means reducing a given dynamic math model to 

one with fewer degrees of freedom. 

 

• Why Reduction for Dynamics? 

– The model may be to large to solve without reduction. 

– The model has more detail than required. 

– Dynamic reduction is cheaper then the precise analysis of a large 

model.  In other words, each analysis will take less time when reduction 

is put to use. 

– Dynamic reduction is more accurate (and will likely solve in les time) 

than constructing a separate, smaller dynamic model.  
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Reduction Methods for Dynamics 

Available with NX Nastran 

• Guyan reduction (static condensation) 

 

• Modal reduction 
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Static Condensation 

(Internal Calculation) 
• Let {uf} be the set of the unconstrained (free) structural coordinates 

• Partition 

 

 

 

 

where 

 ua = analysis set 

 uo = omitted set 

{uf} = 
{uo} 

{ua} 

Degrees of freedom removed during 

User-Selected dynamic 
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Static Condensation 

(Internal Calculation) 
• Form a static equation for uf and partition the stiffness matrix into the 

O-set and the A-set. 

Koo Koa 

KoaT 

• Assume Po is zero and solve for uo in terms of ua 

 

Kaa 

uo 

ua 

Po 

Pa 

= 

{uo} = [Goa] {ua} 

[Goa] = -[Koo]
-1 [Koa] 
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Static Condensation 

(Internal Calculation) 
• Transformation from the A-set to F-set is: 

• O-set is dependent upon the A-set.  The motion of the O-set is a 

linear combination of the A-set motions.  The columns of Goa are the 

static shape vectors 

• The equations of motion for the F-set are written in terms of the  

 A-set 

uo 

ua 

Goa 

I 
= 

ΨTMfΨ{üa} + ΨTBfΨ{ua} + ΨTKfΨ{ua} = ΨTPf 

Maaüa + Baaua + Kaaua = Pa 

{uf} = {ua} 

Ψ 

˙ 

or 

˙ 
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Static Condensation 

(Internal Calculation) 
• Dynamics problems are solved in terms of the reduced coordinates 

(A-set).  O-set components are recovered. 

 

• O-set mass, damping and stiffness is spread to the A-set. 

 

• The largest cost (increased run time) is associated with the 

formulation of Maa and Baa, particularly for nondiagonal (coupled 

mass) Mff. 

 

• The resulting Kaa, Baa, and Maa are small and dense (i.e. matrix 

bandedness is destroyed). 
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Static Condensation 

(Internal Calculation) 
Summary 

• Separate free degrees of freedom (uf) into the omitted set (uo) and 

the analysis set (ua) by means of OMIT entries or ASET entries. 

• Retain only a small fraction of the DOFs (typically 10% or less) in 

the analysis set because the computer costs for static condensation 

increase rapidly with the size of the analysis set.  Otherwise, retain 

all of the DOFs. 

• Retain DOFs with large concentrated masses in the analysis set. 

• Retain DOFs that are loaded (in transient and frequency response 

analysis) 

• Retain DOFs to adequately describe deflected shape or modes of 

interest. 
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Solution Control for Guyan Reduction 

• Executive Control Section 

 
•Any SOL 

 

• Case Control Section 

 
• No special commands required 

 

• Bulk Data section 

 
• ASET (optional* - specifies A-set) 

• OMIT (optional* - specifies O-set) 

Using the Analysis Set Manager in 

FEMAP, the A-Set or O-set can be 

selected as boundary condition sets 

in the lower portion of the Boundary 

Conditions dialog box. 
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Solution Control for Guyan Reduction 

• Creating an A-Set: 
• First, create a new constraint set using the Model->Constraint->set command. 

• Next, use the Model->Constraint->Nodal command… 

 

 

 

 

 

• Choose the nodes wanted for the A-Set, then Click OK. 

• Now, choose which DOFs for the nodes should be in the A-Set. 

 

 

 

 

 

 

 

• Finally, click OK, then Cancel. 
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Difficulties with Guyan Reduction 
• User effort in selecting A-Set points 

• Accuracy depends on user’s skill in selecting A-Set points 

• Regardless of user’s skill, high accuracy requires a large number of 

A-Set points (increases run-time) – 2 to 5 times the number of 

modes desired 

• Stiffness reduction is exact; mass and damping reductions are only 

approximations 

• No loss in accuracy of modes occurs when omitting mass-less 

degrees of freedom 

• Errors are most pronounced at higher modes 

• Local modes may be missed altogether 

• Not generally recommended, except when performing test-analysis 

correlation 
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Difficulties with Guyan Reduction 
• The static condensation approximation may miss the local dynamic 

effects 

{uo} = [Goa] {ua} + {uo
o} 

0 

Local Dynamic Effect 

Physical Variables 

Static Transformation 

{uo
o} = [Koo

-1] {Po}
 

Loads on O-set Components 



Page 82 of 255 

Modal Reduction 
• All NX Nastran linear dynamic solutions have two versions: 

• Direct – The solution is solved in terms of the A-Set 

• Modal – The solution is solved in terms of modal coordinates (H-set) 

 

• In the modal solution sequences the A-Set coordinates are written in 

terms of modal coordinates 

 

 

 

 

• Modal vectors (mode shapes) are solutions to the undamped 

eigenvalue problem (A-Set coordinates) 

 

{ua} = [Φa] { ξ }  

Modal Coordinates 

Matrix of Mode Shapes 

[Maa] {üa} + [Kaa] {ua} = 0 
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Modal Reduction 
• Equations of motion for the A-Set are written in terms of modal 

coordinates (H-set notation, modal coordinates are handled 

internally) Note: E-Set DOFs are not shown here for clarity. 

{uf} = [Ψ] {ua} 
 

Note: A-Set matrices may be reduced matrices from Guyan Reduction or GDR. 

Transformation from model coordinates to the F-Set would require two transformations. 

[Φa]
T[Maa][Φa][ξ] + [Φa]

T[Baa][Φa][ξ] + [Φa]
T[Kaa][Φa][ξ] = [Φa]

T[Paa] 

If [Φ] is mass normalized and there are no K2PP, M2PP, B2PP, or TF, then: 

[ I ]{ξ} + [Φ]T[Baa][Φa]{ξ} + [ωi
2][ξ] = [Φ]T[Pa] 

{ua} = [Φa] {ξ}  

{uf} = [Ψ] {Φa} {ξ} 
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Solution Control for Modal Reduction 

• Executive Control Section 

 
•Any modal dynamic 

analysis SOL 

 

• Bulk Data section 

 
• EIGR or EIGRL (required – selects parameters for eigenanalysis) 

 

• Case Control Section 

 
• METHOD (required –

selects Bulk Data EIGR 

or EIGRL entry) 



Page 85 of 255 

Solution Control for Modal Reduction 

• Using the Analysis Set Manager: 
• Choose “4..Frequency/Harmonic Response” from the Analysis Type 

drop-down menu 

Click the Next button 5 times until 

the NASTRAN Dynamic Analysis 

dialog box appears.  Click Modal in 

the Solution Type portion of the 

dialog box.  Then click OK. 
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Problem #2 

Normal Modes Analysis using 

Guyan Reduction 
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Problem #2: Normal Modes Analysis of a 

Flat plate using Static Reduction 
For this problem, use Guyan Reduction to reduce the model used in 

Problem #1. Then find the first five natural frequencies and mode shapes 

using the Automatic Givens method.  Use the nodes indicated on the next 

page for the A-Set. 
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Problem #2: Modal Analysis of a Flat 

Plate Using Static Reduction 

Create a NEW constraint set to represent the A-Set using the 

Model->Constraint->Set command and give it the title A-set to 

avoid confusion.  Then use the Model->Constraint->Nodal 

command and choose the nodes that are circled in the picture 

above (Nodes:3,5,7,9,11,25,27,29,31,33,47,49,51,53,55) to 

include in the A-set.  After the nodes are chosen, click OK and 

in the Create Nodal Constraints/DOF dialog box click the Fixed 

button to include all six DOFs for each node that was selected. 
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Problem #2: Modal Analysis  

of a Flat Plate 

Mode 1 

Mode 2 

Mode 3 

Mode 4 

Mode 5 

Mode 6 

Mode 7 

Mode 8 

Mode 9 

Mode 10 

133.1727 Hz 

649.0864 Hz 

822.2924 Hz 

2054.124 Hz 

2295.341 Hz 

2360.133 Hz 

3764.084 Hz 

4432.393 Hz 

4836.664 Hz 

5560.032 Hz 

Use these results for comparison: 
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Rigid Body Modes 

NX Nastran Dynamic Analysis 
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Rigid Body Modes 

• A structure has the ability to displace without developing internal 

loads or stresses if it is not sufficiently grounded. 

 Examples: 

(a) 

(b) 

(c) 

No 

Partial 

Mechanism 

P 

P 

P 

• In cases (a) and (b), the structure can displace as a rigid body. 
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Rigid Body Modes 

• The presence of rigid body and/or mechanism modes is evidenced 

by zero frequency values in the solution of the eigenvalue problem. 

• On the assumption that the mass matrix [M] is positive definite, zero 

eigenvalues result from a positive semi-definite stiffness, i.e.: 

[K]{Φ} = [M] {Φ} λ 

{Φ}RIG
T[M]{ΦRIG} > 0 

{Φ}RIG
T[K]{ΦRIG} = 0 

• SUPORT does not constrain the structure.  It simply defines the R-

Set components.  In normal modes analysis, rigid body modes are 

calculated using the R-Set as reference degrees of freedom. 
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• If R-Set is present, rigid body modes are calculated in NX Nastran 

by the following method: 

Step 1:  “a”-set partitioning 

 

 

Step 2: Solve for ul in terms of ur. 

 

 

 

 Note: Pr is not actually applied!!! 

 

 

 Where [Dm] = -Kll
-1Klr 

 

Calculation of Rigid Body Modes 

{ua} =
 ul 

ur 

= Krl 

Krl 

Kll 

Krr 

ul 

ur 

0 

Pr 

{ul} = [Dm] {ur}  

[ΨRIG] = Dm 

Ir 
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 Step 3:  Mass matrix operations 

Calculation of Rigid Body Modes 

[Mr] =
 Dm 

Ir 

T 

[Maa]
 Dm 

Ir 

where [Mr] is not diagonal in general 

• Using Gram-Schmidt orthogonalization (in the READ module), the 

matrix [Mr] is orthogonalized by the transformation [Φro], that is: 

 

[Mo] = [Φro]
 T 
[Mr][Φro]
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 Step 4:  Rigid body mode construction 

Calculation of Rigid Body Modes 

[Φa]RIG = DmΦro 

Φro 

with the property: 

[Φa]RIG
T[Kaa][Φa]RIG = Krr ≈ 0  

[Φa]RIG
T[Maa][Φa]RIG = [Mo]  
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• Care must be taken when selecting SUPORT DOFs. 

• SUPORT DOFs must be able to displace independently without 

developing internal stresses (statically determinate) 

 

 

Selection of “SUPORT”  

Degrees of Freedom 

3 

1 4 

5 2 

6 3 

1 

2 

6 

5 

4 

Bad Selection for SUPORT Good Selection for SUPORT 

(The independent displacement of 1 and 4 

may produce internal stress) 
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• In NX Nastran for FEMAP, the 

“SUPORT” degrees of freedom 

can be entered by creating a 

constraint set with the desired 

nodes and degrees of freedom 

(much like the way the A-set was 

created for Guyan Reduction in 

the last section), then selecting 

that constraint set from the 

Kinematic (SUPORT) drop down 

menu in the Boundary 

Conditions dialog box of the 

Analysis Set Manager 

Selection of “SUPORT”  

Degrees of Freedom 
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• NX Nastran calculates internal strain-energy (work) for each rigid 

body vector. 

Checking of “SUPORT”  

Degrees of Freedom 

[X] = [DTl] =  = Krl 

Krl 

Kll 

Krr 

D 

I 

[X] = DTKllD + Krr 
 

Strain Energy Matrix, Diagonals Printed 

Rigid Body Vectors 

• If actual rigid body modes exist, the strain-energy is ≈ 0 

• Note that [X] is also the transformation of the stiffness matrix [Kaa] to 

R-Set coordinates, which by definition of rigid body (zero frequency) 

vector properties, should be null. 
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• NX Nastran also calculates the rigid body error ratio 

Checking of “SUPORT”  

Degrees of Freedom 

ε =  
Krr 

[X] 

Where          means Euclidian norm of the matrix 

• Only one value of ε is calculated using [X] and [Krr] based on all 

SUPORT DOFs 

= ΣΣxij
2 

i j 



Page 100 of 255 

• Except for round-off errors, the rigid body error ratio and the strain 

energy should be zero if a compatible set of statically determinate 

supports are chose by the user.  The quantities may be non-zero for 

any of the following reasons: 

• Round-off error accumulation 

• The ur set is over-determined leading to redundant supports (high energy 

strain). 

• The ur set is underspecified leading to a singular reduced stiffness matrix 

(high rigid body error ratio). 

• The multipoint constraints are incompatible (high strain energy and high rigid 

body error ratio) 

• There are too many single point constraints (high strain energy and high 

rigid body error ratio) 

• Krr is null (unit value for rigid body error but low strain energy).  This is an 

acceptable condition and may occur when generalized dynamic reduction is 

used. 

Checking of “SUPORT”  

Degrees of Freedom 
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Rigid Body Modes 

• In NX Nastran, flexible body modes associated with the A-Set mass 

and stiffness matrices are calculated.  The first N modes calculated 

by the eigenanalysis (where N is the number of DOFs in the R-Set) 

are discarded.  The N rigid body modes are substituted in their 

place. 

Note: NX Nastran does not check that discarded modes are rigid body modes 

(i.e., ω=0) 

{ua} = [ΦaFLEX] =  
ξRIG 

ξFLEX 
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Rigid Body Modes 

• When this transformation is applied to the dynamic system and 

modes are the unit mass normalized, we obtain: 

+  [ΦTBΦ] 
ξRIG 

ξFLEX 

IRIG 

IFLEX 

0 

0 

ξRIG 

ξFLEX 

+ 
0 

ωFLEX
2 

0 

0 

ξRIG 

ξFLEX 

ΦRIG
TP 

ΦFLEX
TP 

= + 
ΦRIG

T 

ΦFLEX
T 

{N + Q} 
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Rigid Body Modes 
• As a result of the transformation, the following consequences occur: 

• Constraint forces are not externally active, i.e., 

 

 

 

• If damping elements are not connected to ground, then: 

 

 

 Thus,  

 

 

 

• If damping is “proportional”, then: 

0 0 

0 

[ΦRIG
T][B] = [0] 

{Q} = {0} ΦRIG
T 

ΦFLEX
T 

ΦRIG
T 

ΦFLEX
T 

[B][ΦRIG ΦFLEX] = 
ΦFLEX

T[B] ΦFLEX 

0 0 

0 

ΦRIG
T 

ΦFLEX
T 

[B][ΦRIG ΦFLEX] = 
2ξiωi 
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Dynamic Matrix Assembly 

NX Nastran Dynamic Analysis 
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Dynamic Matrix Assembly 

• NX Nastran provides direct and modal methods for 
performing transient and frequency response and 
complex mode analysis. 

 

• The dynamic matrices are assembled differently 
depending on the analysis and method. 
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Damping 
• Damping represents energy dissipation observed in structures 

 

• Damping is difficult to accurately model since damping results from 
many mechanisms: 

 

• Viscous effects (shock absorber, dashpot) 

• External friction (slippage in structural joints) 

• Internal friction (characteristic of material type) 

• Structural nonlinearities (plasticity) 

• Analytical conveniences used to model damping 

• Viscous damping force 

 

• fv = bu 

 

b = viscous damping coefficient 

 

• mü + bu + ku = p 

• Structural damping force 

 

• fs = igku where i =   -1 

 

g = structural damping coefficient 

 

• mü + (1 + ig)ku = p ˙ 

˙ 
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Structural Damping versus 

Viscous Damping 
• Assume sinusoidal response: 

    u = ūeiωt 

 

   Then u = iωūeiωt ü = -ω2ūeiωt 

 

• Viscous damping: 

•  mü + bu + ku = p(t) 

•  m(-ω2ūeiωt)+ b(iωūeiωt)+ kūeiωt = p(t) 

•  -ω2mūeiωt + ibωūeiωt+ kūeiωt = p(t) 

 

• Structural damping: 

•  mü + (1 +ig)ku = p(t) 

•  m(-ω2ūeiωt)+ (1+ ig)kūeiωt = p(t) 

•  -ω2mūeiωt + igkūeiωt + kūeiωt = p(t) 

˙ 

˙ 
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Structural Damping versus 

Viscous Damping 
• Both equations are identical if: 

    gk = bω       b = 

 Therefore, if structural damping g is to be modeled using viscous damping 

b, then the equality holds at only one frequency ω3 (or ω4) 

gk 

ω 

gk 

ω 
b = 

ω = ωn =  

if 
k 

m 

gk 

ωn 

b =         = gmωn 

bc = 2mωn 

but 
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Structural Damping versus 

Viscous Damping 

 ξ = critical damping ratio (percent critical damping) 

 

 g =       = structural damping ratio 

 

 Q = quality factor or magnification factor 

then 

b      gmωn 

bc     2mωn 

ξ  =      =             = 
g 

2 

1 

Q 
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Structural Damping versus 

Viscous Damping 

(Constant Displacement) 

• Viscous and structural damping are equivalent at frequency ω3 (or ω4) 

Damping 

ω3 (or ω4) ω 

Viscous Damping, 

fv = bu = buω ˙ Structural Damping 

fs = gku  

Equivalent Viscous Damping 

b = gk/ω3(or ω4)   
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Damping Summary 
• Viscous damping force proportional to velocity 

 

• Structural damping force proportional to displacement 

 

• Critical damping ratio b/bc ≡ ξ 

 

• Quality factor Q inversely proportional to energy dissipated per cycle 
of vibration 

 

• At resonance ω = ωn 

 

• ξ = g/2 

• Q = 1/(2ξ) 

• Q = 1/g 

~ 
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Damping in NX Nastran for FEMAP 

Damping 

Type 

Direct 

Transient 

Modal 

Transient 

Direct 

Frequency 

Modal 

Frequency 

GE GE 

Viscous 

Element 

Overall 

Structural 

Material 

Modal 

PARAM,G PARAM,G 

N/A TABDMP N/A TABDMP 

b ≡  b ≡  

b ≡  
Force  

kge  

Velocity  

ω4  

b ≡  
Force  

Velocity  
b ≡  

Force  

Velocity  
b ≡  

Force  

Velocity  

kge  

ω4  

b ≡  b ≡  
kg  

ω3  

kg  

ω3  
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Damping Input 
• Structural Damping 

– MATi Bulk Data Entries 

 

 

• PARAM,G,factor (default = 0.0) 

– Overall structural damping coefficient to multiply entire system stiffness matrix 

• PARAM,W3,factor (default = 0.0) 

– Converts overall structural damping to equivalent viscous damping 

• PARAM,W4,factor (default = 0.0) 

– Converts element structural damping to equivalent viscous damping 

• Units for W3,W4 in NX Nastran for FEMAP are in Hertz (Hz) 

 

• If PARAM,G is used, PARAM,W3 must be given a setting greater 

than zero; otherwise, PARAM,G is ignored in transient response 

analysis 

MID MAT1 NU G E RHO A TREF GE 

2 1 5 4 3 6 7 8 9 10 
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Damping Input 
• Setting the PARAMs for G, ω3, and ω4 in NX Nastran for FEMAP is 

accomplished using the Model->Load->Dynamic Analysis 

command.  The Load Set Options for Dynamic Analysis dialog box: 

G 

ω3 

ω4 
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Damping Input 
• Modal Damping can be set using the Model->Function command.  

Choose the type of damping desired from the Type drop-down menu 

in the Function Definition dialog box: 

Damping 

function types: 

 

6..Structural vs. 

Freq 

 

7..Critical Damp 

vs. Freq 

 

8..Q Damping 

vs. Freq 
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Damping Input 
• Scalar viscous damping 

 

CDAMP1 Scalar damper between two 

  DOFs with reference to a 

  property entry 

 

CVISC Element damper between 

  two grid points; references a 

  property entry (PVISC) 

 

Damping values are assigned through 

spring properties 
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Damping Input 
• DOF Spring Property creates CDAMP1 
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Damping Input 
• SPRING Property creates PVISC Property card 

Also, used to create the PBUSH property card for Nastran CBUSH elements 
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Direct Methods 
• The general dynamic equation used in the direct method is: 

   [Mddp
2 + Bddp + Kdd] {ud} = {Pd} 

  where p = a derivative operator 

   ud = the union of the analysis set ua and extra points ue 

• For frequency response and complex eigenvalue analysis, the 

dynamic matrices are: 

 

  [Kdd] = (1 + ig)[K1
dd] + [K2

dd] + i[K4
dd] 

  [Bdd] = [B1
dd] + [B2

dd] 

  [Mdd] = [M1
dd] + [M2

dd] 
 

• For transient response, the dynamic matrices are: 
 

  [Kdd] = [K1
dd] + [K2

dd] 

  [Bdd] = [B1
dd] + [B2

dd] +       [K1
dd] +      [K4

dd] 

  [Mdd] = [M1
dd] + [M2

dd] 

˙ 

˙ 

g 

ω3 

1 

ω4 
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Dynamic Matrix Definitions 
[K1

dd] is the reduced structural stiffness matrix plus the reduced direct input 

K2GG (symmetric). 

[K2
dd] is the reduced direct input matrix K2PP plus the reduced transfer 

function input (symmetric or unsymmetric). 

[K4
dd] is the reduced structural damping matrix obtained by multiplying the 

stiffness matrix [Ke] of an individual structural element by an element 

damping factor ge and combining results for all structural elements 

(symmetric). 

[B1
dd] is the reduced viscous damping matrix plus the reduced direct input 

B2GG (symmetric). 

[B2
dd] is the reduced direct input matrix B2PP plus the reduced transfer 

function input (symmetric or unsymmetric). 

[M1
dd] is the reduced mass matrix plus the reduced direct input M2GG 

(symmetric). 

[M2
dd] is the reduced direct input matrix M2PP plus the reduced transfer 

function input (symmetric or unsymmetric). 

g, ω3, ω4  are the constants specified by the user.  
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Modal Methods 
• The general dynamic equation used in the modal method is: 

   [Mhhp
2 + Bhhp + Khh] {uh} = {Ph} 

  where p = a derivative operator 

   uh = the union of the modal coordinates ξI and extra points ue 

• The transformation between ξI and ua is: 

  {ua} = [Φai]{ξi} 

  where [Φai] is the matrix of eigenvectors obtained in real eigenvalue analysis 

• The transformation from uh to ud is obtained by augmenting [Φai] to 

include the extra points. 

{ud} = [Φdh] {uh} 

 

where [Φdh] = 

 

 

  {uh} =   

Φai 0 

0 Iee 

ξi 

ue 
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Modal Methods 
• For frequency response and complex eigenvalue analysis, the 

dynamic matrices are: 

 [Khh] = [ki] + [Φdh]
T(ig[K1

dd] + [K2
dd] + i[K4

dd]) [Φdh]  

 [Bhh] = [bi] + [Φdh]
T([B1

dd] + [B2
dd]) [Φdh]  

 [Mhh] = [mi] + [Φdh]
T[M2

dd][Φdh] 

 

where  [mi] = a diagonal matrix with terms mii = [Φai]
T[Maa][Φai] 

  [bi] = a diagonal matrix with terms bii = ωig(ωi)mii is the radian 

 frequency of the i-th normal mode and g(ωi) is a damping factor 

 obtained from interpolation of a user-supplied table (TABDMP1) 

  [ki] = a diagonal matrix with terms kii = ωi
2mii 

• If parameter 

   KDAMP = -1, then 

   mii = mii 

   bii = 0 

   kii = (1 + ig(ωi))kii 

 g(ωi) is a damping factor obtained from the interpolation of a user-supplied 

table (TABDMP1) 
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Modal Methods 
• [mi], [bi], and [ki] are expanded by the addition of zeros to the rows 

and columns corresponding to the extra points (ue). 

 

• For transient response the dynamic matrices are: 

 

 [Khh] = [ki] + [Φdh]
T([K2

dd][Φdh] 

  

 [Bhh] = [bi] + [Φdh]
T([B1

dd] + [B2
dd] +      [K1

dd] +      [K4
dd]) [Φdh]  

 

 [Mhh] = [mi] + [Φdh]
T[B2

dd][Φdh] 

 

• If only [mi], [bi], and [ki] are present in any modal dynamic analysis, 

then the modal dynamic equations are uncoupled. 

 

 

g 

ω3 

1 

ω4 
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Transient Response Analysis 

NX Nastran Dynamic Analysis 
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Introduction to Transient  

Response Analysis 

• Compute response to time-varying excitation. 

• Excitation is explicitly defined in the time domain.  All of 

the applied forces are known at each instant in time. 

• Computed response usually includes nodal 

displacements and accelerations, and element forces 

and stresses. 

• Two categories of analysis – direct and modal 
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Direct Transient Response 
• Dynamic equation of motion 

 

  [M] {ü(t)} + [B] {u(t)} + [K] u(t) = {p(t)} 

 

• Response solved at discrete times with fixed ∆t 

 

• Using central finite difference representation for {u(t)} and {ü(t)} at 

discrete times 

 

   {un} =       {un+1 – un-1} 

  

   {ün} =       {un+1 – 2un + un-1} 

 Note: These equations are also used by NX Nastran to compute velocity and 

acceleration output. 

˙ 

˙ 

1 

2∆t 
˙ 

1 

∆t2 
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Direct Transient Response 
• Numerical integration (Newmark – Beta type method) 

(except “smear” force over 3 adjacent time points) 

 

  (un+1 – 2un + un-1) +           (un+1 – un-1)        (un+1 + un + un-1)  

 

=      (Pn+1 – Pn + Pn-1)  

b 

2∆t 

m 

∆t2 

k 

3 

1 

3 

un+1 + un + un-1 

pn+1 + pn + pn-1 

3 

3 

Time 

Average 
p(t) 

t ∆t 

• Alternate methods: Wilson – θ, Hughes – α, Bathe 
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Direct Transient Response 
• Solution 

 

  [A1] {un+1} = [A2] + [A3]{un} + [A4]{un-1} 

 

Where [A1] = [M/∆t2 + B/2∆t + K/3] Dynamic Matrix 

  [A2] = 1/3 {Pn+1 + Pn + Pn-1} Applied Force 

  [A3] = [2M/∆t2 - K/3] 

  [A4] = [-M/∆t2 + B/2∆t - K/3] 

 

Except that {P(t)} is averaged over three time points and [K] is modified such 

that the dynamics equation of motion reduces to a [K]{un} = {Pn} if no [M] or [B] 

˙ 

Initial Conditions, from 

previous Time Step 
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Direct Transient Response 
• Solve by decomposing A1 and applying it to the right-hand side of the 

above equation. 

• Similar to classical Newmark-Beta method, except: 

• Applied force is averaged over 3 adjacent time points. 

• The stiffness K is similarly averaged to get the correct static solution for  

 M,B = 0. 

• M,B, and K do not change with time. 

• A1 needs to decomposed only once if ∆t is unchanged throughout the 

entire solution.  If ∆t is changed, A1 must be re-decomposed (which 

may increase run times dramatically). 

• The output time interval may be greater than the solution time interval 

(example: use solution ∆t of 0.001 second and output results every 

fifth time step or with output ∆t  of 0.005 second). 

˙ 
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Damping in Modal Transient Response 
• If damping matrix B exists, then the assumption is made that it is not 

diagonalized by Φ: 

 ΦTBΦ ≠ diagonal 

 

• The coupled problem is solved using modal coordinates utilizing the 

direct transient response Newmark-Beta type numerical integration. 

  

 [A1] {ξn+1} = [A2] + [A3]{ξn} + [A4]{ξn-1} 

where 

 [A1] = [Φ]T[M/∆t2 + B/2∆t + K/3][Φ] Dynamic Matrix 

 [A2] = 1/3[Φ]T{Pn+1 + Pn + Pn-1}  Applied Force 

 [A3] = [Φ]T[2M/∆t2 - K/3][Φ] 

 [A4] = [Φ]T[-M/∆t2 + B/2∆t - K/3][Φ] 
Initial Conditions, from 

previous Time Step 
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¨ 

Damping in Modal Transient Response 
• If modal damping is used, then each mode has damping bi. 

 

• The equations of motion become uncoupled 

 

 miξ + biξ +kiξ = pi(t) 
˙ 
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Damping in Modal Transient Response 
• Use Duhamel’s integral to solve for modal response as decoupled 

SDOF systems. 

• Duhamel’s integral: 

 

 ξ(t) = e-bt/2m   ξo cos ωdt + 

 

   e-bt/2m          ∫ e-bt/2mp(τ)sinωd(t – τ) τd 

ξo + (b/2m)ξo 

ωd 

+ 

mωd 

1 

t 

0 

p(t) 

t 
dτ 

τ t 
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Damping in Modal Transient Response 
• Most efficient to use modal damping ratios since equations are 

decoupled 

• TABDMP1 Bulk Data entry defines the modal damping ratios. 

• Example: For 10% Critical Damping 

g = 0.2 (6) 
 

CRIT = 0.10 (7) 

 

Q = 5.0 (8) 

These are the 

three options for 

modal damping 
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Data Recovery in Modal  

Transient Response 
• Recover physical response as the summation of the modal 

responses 

 

   u = [Φ] {ξ} 

 

• Not as large a computational penalty for changing ∆t in modal 

transient response as in direct.  However, the constant ∆t is still 

recommended. 

 

• The output interval may be greater than the solution time interval 
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Mode Truncation 
• May not need all of the computed modes.  Often only the lowest few 

will suffice for dynamic response calculation. 

• PARAM,LFREQ gives the lower limit on the frequency range of 

retained modes. 

• PARAM,HFREQ gives the upper limit on the frequency range of 

retained modes. 

• PARAM,LMODES gives the number of the lowest modes to be 

retained. 

• Truncating high-frequency modes truncates high-frequency response. 
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Mode Truncation 
• Mode truncation PARAMs can be entered in FEMAP using Model-> 

Load->Dynamic Analysis command.  The Load Set Options for 

Dynamic Analysis dialog box will appear (Modal Transient or Modal 

Frequency must be selected as the Solution Method): 

PARAM,LMODES 

PARAM,LFREQ 

PARAM,HFREQ 

Solution Methods 

(make Response 

Based on Modes 

fields active) 
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Transient Excitation 
• Define force as a function of time using the Model->Function 

command and choosing “1..vs Time” as the Type 

Enter values for the Excitation in the Y-field and values for Time in the X-field.  

Also, a linear ramp or other equation can be used to create values automatically.  

Once the values are input, Click OK. 

 

Note: Tabular information in an Excel spreadsheet (2 columns maximum) or 

comma separated table can be pasted into FEMAP from the clipboard to create a 

function using the Get button 

Choose “1..vs Time” from 

the Type drop-down menu 
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Transient Excitation 
• Create a functionally dependent load representing dynamic excitation 

by using the Model->Load->(Nodal or Elemental) command.  The 

Create Loads on (Nodes or Elements) dialog will appear: 

Enter a “unit” value in the 

direction of the dynamic 

excitation and choose a 

loading function from the 

Function Dependence drop-

down menu. 
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Transient Excitation Considerations 
• The 1/3 “smearing” of applied loads must be taken into account.  This 

will smooth the force and decrease apparent frequency content. 

• Avoid discontinuous forces.  These may cause different results on 

different computers. 

A 

B 

C 

C+ 

A- Force 

Time 

If N∆t causes a solution at ABC, then NX Nastran should select the average force B. 

 

However, due to numerical round-off, N∆t on one computer may be at time A- and will 

give force A. On another computer, N∆t may be at time C+ and will give force C. 

 

The integration results will differ depending on whether the force at N∆t is A, B, or C. 
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Transient Excitation Considerations 

• Smooth a discontinuous force over one ∆t 

Force 

Time 

= original force 

= smoothed force 
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Initial Conditions 
• May impose initial displacement and/or velocity in direct transient 

response via the TIC Bulk Data entry.  Initial Conditions are not 

available in standard modal transient. 

• The IC Case Control Command selects the TIC entry. 

• Attention – initial conditions for unspecified DOFs are set to Zero. 

• Initial conditions may be specified only for A-set DOFs. 

• Initial conditions may be specified only in direct transient response.  In 

modal transient response, all initial conditions are set to zero. 

• Initial conditions are used to determine the values of {u0}, {u-1}, {P0}, 

and {P-1} used in calculating {u1}.  The acceleration for all points is 

assumed to be zero for time, t ≤ 0 (constant velocity). 

    {u-1} = {u0} – {u0}∆t 

    {P-1} = [K]{u-1} – [B]{u0} 

The load specified by the user at t = 0 is replaced by: 

    {P0} = [K]{u0} – [B]{u0} 

˙ 

˙ 

˙ 
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Initial Conditions 

• The recommended practice for any type of dynamic excitation is to 

use at least one time step of zero excitation prior to applying the 

dynamic force 

Force 

Time 
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TSTEP Entry 
• Select integration time step for direct and modal transient response. 

• Integration errors increase with increasing natural frequency. 

• Recommended ∆t is to use at least eight solution time steps per 

period (cycle) of response. 

• The TSTEP Bulk Data entry controls solution and output ∆t, and is 

selected by the TSTEP Case Control command. 

 

• The cost of integration is directly proportional to the number of time 

steps when ∆t is constant. 

 

• Use adequate length of time to properly capture long-period (low-

frequency) response. 
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TSTEP Entry 
• Creating the TSTEP entry in FEMAP is accomplished using Model-> 

Load->Dynamic Analysis command.  The Load Set Options for 

Dynamic Analysis dialog box will appear: 

Ni, Number of Time 

Steps of value DTi 

Portion of dialog box 

for creating the Ni, 

DTi, and NOi, 

entries on the 

TSTEP Bulk data 

card. 

NOi, Skip factor for 

output.  Every NOi-th 

step will be saved for 

output (default =1) 

DTi, Time increment 
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Problem #3 

Direct Transient Response 
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Problem #3: Direct Transient Response 
For this problem, use the direct method to determine the transient response of the flat 

rectangular plate, created in problem #1, subject to a time-varying excitation.  The 

structure is excited by a 1 psi pressure load over the total surface of the plate 

varying at 250 Hz.  It is also excited with a 50 lb force in the lower right corner (node 

11) which is also varying at 250 Hz, but 180 out-of-phase with the pressure load.  

Both time-dependent dynamic loads are applied for a duration of 0.008 seconds only.  

Use structural damping of g = 0.06 and convert this damping to equivalent viscous 

damping at 250 Hz.  Continue the analysis to 0.04 seconds.  

1 psi over entire surface 

50.00 lb 
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Problem #3: Direct Transient Response 
T3 Translation for Node 11 over complete duration of analysis 
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Problem #3: Direct Transient Response 

Time 0.0024 

Node 11 

Node 33 

Node 55 

 

Time 0.0052 

Node 11 

Node 33 

Node 55 

 

Time 0.02 

Node 11 

Node 33 

Node 55 

T3 Displacement 

-0.26051 in 

-0.287 in 

-0.31076 in 

 

T3 Displacement 

0.27895 in 

0.31823 in 

0.3528 in 

 

T3 Displacement 

0.038693 in 

0.038876 in 

0.038945 in 

Use these results for comparison: 
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Problem #4 

Modal Transient Response 
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Problem #4: Modal Transient Response 
For this problem, use the direct method to determine the transient response of the flat 

rectangular plate, created in problem #1, subject to a time-varying excitation.  The 

structure is excited by a 1 psi pressure load over the total surface of the plate 

varying at 250 Hz.  It is also excited with a 25 lb force in the lower right corner (node 

11) which is also varying at 250 Hz, but starting 0.004 seconds after the pressure 

load.  Both time-dependent dynamic loads are applied for a duration of 0.008 

seconds only.  Use a modal damping table of ξ = 0.03 for all the modes.  Continue 

the analysis to 0.04 seconds.  

1 psi over entire surface 

25.00 lb 
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Problem #4: Modal Transient Response 
T3 Translation for Node 11 over complete duration of analysis 
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Problem #4: Modal Transient Response 

Time .0068 

Node 11 

Node 33 

Node 55 

 

Time .0092 

Node 11 

Node 33 

Node 55 

 

Time .022 

Node 11 

Node 33 

Node 55 

T3 Displacement 

0.14765 in 

0.16062 in 

0.17344 in 

 

T3 Displacement 

-0.16902 in 

-0.18492 in 

-0.20055 in 

 

T3 Displacement 

-0.038703 in 

-0.03752 in 

-0.036237 in 

Use these results for comparison: 
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Frequency Response Analysis 

NX Nastran Dynamic Analysis 
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Introduction to Frequency  

Response Analysis 

• Compute response to oscillatory excitation. 

• Excitation is explicitly defined in the frequency domain.  

All of the applied forces are known at each forcing 

frequency. 

• Computed response usually includes nodal 

displacements and element forces and stresses. 

• The computed responses are the complex numbers 

defined as magnitude and phase (with respect to forcing) 

or as real and imaginary components 

• Two categories of analysis – direct and modal 
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Direct Frequency Response 
• Dynamic equation of motion 

 

  [-ω2M + iωB + K] {u(ω)} = {P(ω)} 

 

• PARAM,G and GE on MATi entry do not form a damping matrix.  They 

form a complex stiffness matrix 

   K = (1+ iG)K1 + i∑GEkE 

where K1 = global stiffness matrix 

   G = overall structural damping coefficient (PARAM,G) 

   kE = element stiffness matrix 

   GE = element structural damping coefficient (GE on MATi entry) 

 

• Solve the equation by inserting to form a complex left-hand side, and 

then solve it similar to a Statics problem (using complex arithmetic) 
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Modal Frequency Response 
• Convert to modal coordinates and solve as decoupled SDOF 

systems 

 

 

 

• Much quicker to solve this equation than in direct method 

 

• Decoupled procedure can be used only if either no damping is 

present or if modal damping alone (via TABDMP1) is used.  

Otherwise, use the less efficient direct approach (on smaller modal 

coordinate matrices) if non-modal damping (VISC,DAMP) is present. 

Pi 

-miω+ ibiω+ ki 

ξi = 
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Excitation Definition 
• Define force as a function of time using the Model->Function 

command and choosing “3..vs Frequency” as the Type 

Enter values for the Excitation in the Y-field and values for Frequency in the X-

field.  Also, a linear ramp or other equation can be used to create values 

automatically.  Once the values are input, Click OK. 

Choose “3..vs Frequency” 

from the Type drop-down 

menu 
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Excitation Definition 
• Create a functionally dependent load representing dynamic excitation 

by using the Model->Load->(Nodal or Elemental) command.  The 

Create Loads on (Nodes or Elements) dialog will appear: 

Enter a “unit” value in the 

direction of the dynamic 

excitation and choose a 

loading function from the 

Function Dependence drop-

down menu. 
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Frequency Response Considerations 
• Exciting an undamped (or modal damped) system at 0.0 Hz gives the same 

results as a static analysis.  Therefore, if the maximum excitation frequency is 

much less than the lowest resonant frequency of the system, a static analysis 

is sufficient. 

• Very lightly damped structures exhibit large dynamic responses for excitation 

frequencies near resonant frequencies.  A small change in the model (or 

running it on another computer) may give large changes in such response. 

• Use a fine enough frequency step size (∆f) to adequately predict peak 

response.  Use at least 5 points per half-power bandwidth. 

Peak 

Peak/    2 = Half power point 

Response 

Frequency f1 f2 

Half-Power 
• For maximum efficiency, use an uneven frequency step size.  Use smaller ∆f 

in regions of resonant frequencies and larger ∆f in regions removed from 

resonant frequencies 
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Solution Frequencies 
• Define a table of solution frequencies using the Model->Function 

command.  Then use the Model-> Load->Dynamic Analysis command 
to choose the Modal Frequency Table.  The Load Set Options for 
Dynamic Analysis dialog box will appear: 

If a normal modes 

analysis has already 

been performed and the 

results read into 

FEMAP, then Modal 

Frequency Table can be 

created automatically 

from those modal 

results by pressing the 

Modal Freq…button.  

Some additional factors 

need to be specified to 

create the table but in 

general the defaults in 

FEMAP are usable. 
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Problem #5 

Direct Frequency Response 
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Problem #5: Direct Frequency Response 
For this problem, use the direct method to determine the frequency response of the 

flat rectangular plate, created in problem #1, subject to a frequency-varying excitation.  

The structure is excited by a unit load (1.0) at the lower right corner (node 11).  Use a 

frequency step (∆f) of 20 Hz between a range of 20 and 1000Hz.  Use Structural 

damping g = 0.06.  

1.00 
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Problem #5: Direct Frequency Response 
T3 Translation for Node 11 (Magnitude) over complete duration of analysis (Rectilinear graph) 

D

i

s

p

l

a

c

e

m

e

n

t 

Frequency 
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Problem #5: Direct Frequency Response 
T3 Translation for Node 11 (Magnitude) over complete duration of analysis (Y-axis log scale) 

D

i

s

p

l

a

c

e

m

e

n

t 

Frequency 



Page 165 of 255 

Problem #5: Direct Frequency Response 
T3 Translation for Node 11 (Phase) over complete duration of analysis (Rectilinear graph) 

D

i

s

p

l

a

c

e

m

e

n

t 

Frequency 
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Problem #5: Direct Frequency Response 

D

i

s

p

l

a

c

e

m

e

n

t 

Frequency 

T3 Translation for Node 33 (Magnitude) over complete duration of analysis (Y-axis log scale) 
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Problem #5: Direct Frequency Response 
T3 Translation for Node 33 (Phase) over complete duration of analysis (Rectilinear graph) 

D

i

s

p

l

a

c

e

m

e

n

t 

Frequency 
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Problem #5: Direct Frequency Response 

D

i

s

p

l

a

c

e

m

e

n

t 

Frequency 

T3 Translation for Node 55 (Magnitude) over complete duration of analysis (Y-axis log scale) 
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Problem #5: Direct Frequency Response 
T3 Translation for Node 55 (Phase) over complete duration of analysis (Rectilinear graph) 

D

i

s

p

l
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m

e

n

t 

Frequency 
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Problem #5: Direct Frequency Response 

Frequency 140 

Node 11 

Node 33 

Node 55 

 

Frequency 480 

Node 11 

Node 33 

Node 55 

 

Frequency 680 

Node 11 

Node 33 

Node 55 

T3 Displacement 

0.067867 in 

0.068504 in 

0.068888 in 

 

T3 Displacement 

0.00076559 in 

0.0003570 in 

0.0013882 in 

 

T3 Displacement 

0.0078558 in 

0.00026242 in 

0.0074482 in 

Use these results for comparison (Magnitude): 
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Problem #5: Direct Frequency Response 

Frequency 140 

Node 11 

Node 33 

Node 55 

 

Frequency 480 

Node 11 

Node 33 

Node 55 

 

Frequency 680 

Node 11 

Node 33 

Node 55 

T3 Displacement 

212.265 

211.938 

211.655 

 

T3 Displacement 

348.688 

184.776 

176.419 

 

T3 Displacement 

296.914 

338.782 

113.105 

Use these results for comparison (Phase): 
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Problem #6 

Modal Frequency Response 
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Problem #6: Modal Frequency Response 
For this problem, use the modal method to determine the frequency response of the 

flat rectangular plate, created in problem #1, subject to a 0.1 psi pressure load over 

the entire surface and a unit load (1.0lb) at the lower right corner (node 11) lagging 

45°.  Use a modal damping of ξ = 0.03.  Use a frequency step (∆f) of 20 Hz 

between a range of 20 and 1000Hz.  In addition, specify five evenly spaced 

excitation frequencies between the half-power points of each resonant 

frequency between the range of 20 – 1000 Hz (Modal Frequency table).  Run modal 

analysis first to determine resonant frequencies between 20 -1000 Hz. 

1.00 

0.1 psi over the entire surface 
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Problem #6: Modal Frequency Response 
T3 Translation for Node 11 (Magnitude) over complete duration of analysis (Y-axis log scale) 

D

i
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Frequency 
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Problem #6: Modal Frequency Response 
T3 Translation for Node 11 (Phase) over complete duration of analysis (Rectilinear graph) 
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Problem #6: Modal Frequency Response 

D

i

s

p

l

a

c

e
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e

n

t 

T3 Translation for Node 33 (Magnitude) over complete duration of analysis (Y-axis log scale) 

Frequency 
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Problem #6: Modal Frequency Response 
T3 Translation for Node 33 (Phase) over complete duration of analysis (Rectilinear graph) 
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Problem #6: Modal Frequency Response 

D

i

s

p

l
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T3 Translation for Node 55 (Magnitude) over complete duration of analysis (Y-axis log scale) 

Frequency 
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Problem #6: Modal Frequency Response 
T3 Translation for Node 55 (Phase) over complete duration of analysis (Rectilinear graph) 
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Problem #6: Modal Frequency Response 

Frequency 180 

Node 11 

Node 33 

Node 55 

 

Frequency 440 

Node 11 

Node 33 

Node 55 

 

Frequency 720 

Node 11 

Node 33 

Node 55 

T3 Displacement 

0.011813 in 

0.012332 in 

0.012829 in 

 

T3 Displacement 

0.00034835 in 

0.00083596 in 

0.0016477 in 

 

T3 Displacement 

0.0045846 in 

0.00036933 in 

0.0045729 in 

Use these results for comparison (Magnitude): 
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Problem #6: Modal Frequency Response 

Frequency 180 

Node 11 

Node 33 

Node 55 

 

Frequency 440 

Node 11 

Node 33 

Node 55 

 

Frequency 720 

Node 11 

Node 33 

Node 55 

T3 Displacement 

154.131 

153.283 

152.48 

 

T3 Displacement 

233.878 

155.416 

143.213 

 

T3 Displacement 

174.215 

260.31 

345.321 

Use these results for comparison (Phase): 
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Enforced Motion 

NX Nastran Dynamic Analysis 
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Introduction to Enforced Motion 
• Used to analyze constrained structures with base input acceleration, 

velocity, and displacement. 

 

• Common examples include earthquakes (for transient analysis) and 

swept-sine shaker test simulation (for frequency response analysis). 

 

• For many years, no automatic method existed in Nastran for 

applying displacements, velocities, or accelerations to the “base”.  At 

that time, there was a need to convert applied forces on equivalent 

unconstrained structure to enforced motion of constrained structure.  

Now accelerations, velocities, and displacements can be directly 

applied to the base node in what is known as the “Direct Method”.  

The Direct Method will be explained in a later chapter. 

 

• Several methods of Enforced Motion exist: large mass and large 

stiffness. 
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Enforced Motion in Transient Response 

(Large Mass and Large Stiffness methods) 

• The utilization of the Large Mass or Large Stiffness methods was 

necessary to specify acceleration, velocity, or displacement for 

dynamic analysis that involved enforced 

 

• For the indirect method, Nastran can only apply forces {P(t)} to the 

structure.  If enforced motion is selected, for this section, it is 

assumed that the user is imposing the motion on a “large mass”.  

Therefore, the force to move the large mass is proportional to 

acceleration. 

F = mü 

ü = 
F 

m 

or 
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Using “Large Mass” Method in 

Transient Response 

• For enforced acceleration üb 

 

 

 

• Larger mass should be 103 to 108 times the “Structure of Interest” 

mass 

Large Mass 

m 
M = (103-108)m 

Rigid Body 

Structure 

of Interest 

üb≈       P 
1 

ML 
ML = large mass 
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Using “Large Stiffness” Method in 

Transient Response 

• Apply P to spring/structure interface to obtain desired ub.  Spring KL 

is entered on spring entries.  Scale factor KL is entered on force 

entries. 
 

• The large spring should be 102 to 104 times ωc
2m where ωc is the 

cutoff frequency of the excitation. 

Large Spring 

m 
Structure 

of Interest 

ub=       P 
1 

KL 

For enforced motion displacement ub 

KL = large spring 

u 
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Using “Large Stiffness” Method in 

Transient Response 

• Advantages in special cases: Avoids round-off errors in 

differentiation and avoids “rigid body drift” when enforced motion is 

applied to statically indeterminate points. 
 

• Disadvantages in all cases: difficult to estimate a good value for large 

stiffness, and the required modes (in a modal formulation) are high 

frequency ones that are not likely to be included in retained modes. 
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Enforced Motion in Frequency Response 

(Large Mass and Large Stiffness methods) 
• The utilization of the Large Mass or Large Stiffness methods was 

necessary to specify acceleration, velocity, or displacement for 
dynamic analysis that involved enforced motion. 

 

• For these methods, Nastran can only apply forces {P(t)} to the 
structure.  If enforced motion is selected, for this section, it is 
assumed that the user is imposing the motion on a “large mass” 
unless otherwise stated.  Therefore, the force to move the large 
mass is proportional to acceleration. 

 

• The easiest method to use to define enforced motion with 
Frequency Response is the Large Mass method 
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Using “Large Mass” Method in 

Frequency Response 

• In frequency response the input and response are assumed to be 

sinusoidal functions 

P = P(ω)eiωt 

u = u(ω)eiωt 

resulting in a simplified dynamic equation of motion: 

[-ω2M + iωB + K] {u(ω)} = {P(ω)} 
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Using “Large Mass” Method in 

Frequency Response 

• As in transient response, the force required to move a “large mass” 

is: 

P = ma 

a = a(ω)eiωt 

but the acceleration is assumed to be a sinusoidal function: 

P(ω) = ma(ω) 

Therefore, to impose an acceleration, apply: 
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Using “Large Mass” Method in 

Frequency Response 

• To impose displacement: 

a(ω) = -ω2u(ω)eiωt 

A force needs to be applied that results in the desired displacement. 

Differentiating the displacement twice produces an acceleration: 

P(ω) = ma(ω) = -mω2u(ω) 

The applied force is: 

u = u(ω)eiωt 
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Using “Large Stiffness” Method in 

Frequency Response 
• Using the Large Stiffness method is similar to the large mass 

method except the applied force is: 

 

 

 

• To impose a displacement: 

 

 

• To impose an acceleration: 

P = Ku 

P(ω) = Ku(ω) 

P(ω) =        Ka(ω) 1 

-ω2 
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Recommendations for Enforced Motion 

(Large Mass and Large Stiffness methods) 

• Use Large Mass method. 

 

• Large mass should be at least 103 times structure mass for accuracy, 

but no more than 108 times structure mass (any higher causes 

numerical errors). 

 

• Retain rigid body modes for analysis. 

 

• Be careful with units – many times enforced acceleration is specified 

in terms of g (acceleration constant) rather than in direct units (such 

as in/sec2). 

 

• Use a small model to verify solution procedure. 
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Specifying Enforced Motion  

(Large Mass Method) 
• Using the Model-> Load->Dynamic Analysis command to choose the 

Enforced Motion button.  This will guide the user through creating enforced 

motion via the Large Mass method.  The Load Set Options for Dynamic 

Analysis dialog box will appear: 

Click the Enforced 

Motion button after 

selected the desired 

Solution Method at the 

top of the dialog box. 

 

The other parameters 

can be filled in after the 

enforced motion 

process has been 

completed. 
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Specifying Enforced Motion  

(Large Mass Method) 
Select Coordinates for Base Mass.  Any point in 3-D space can be chosen and 

existing node or point potions may be used as well.  Click OK 

Select Nodes on the Base.  At least one node must be chosen to connect the 

structure to the Base Mass.  Once these nodes are chosen, FEMAP will 

automatically create a rigid element from the newly created node at the Base 

Mass location (independent node) to the nodes chosen to represent the base of 

the structure (dependent nodes).  An example of proper selection of “Base 

Nodes” would be the points at the bottom of a High-Voltage tower that attach 

the tower to the ground or its foundation.  Click OK 
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Specifying Enforced Motion  

(Large Mass Method) 

With Large Mass Method, this 

acceleration will be applied as 

a force which is exciting the 

base mass (a = F/M).  Click 

OK. 

 

The mass size and mass factor 

will be selected automatically 

in the next dialog box, but can 

also be altered for a 

customized enforced motion 

effect.  Click OK 

Select acceleration or rotational acceleration from the list of available loads.  

Give a value for the selected load in the forcing direction, and a forcing function.   

 



Page 197 of 255 

Enforced Motion in Transient Response 

(Direct method) 

• While enforced motion with Nastran was accomplished for years by 

either the Large Mass approach or the Lagrange Multipliers 

technique, direct enforced motion capabilities are available in all 

versions of NX Nastran.   

 

• Both the Large Mass and Lagrange Multipliers methods are both 

theoretically valid, they can also be very cumbersome to implement. 

 

• Disadvantages: 

• Large Mass Method – often leads to computational and numerical problems 

due to round off errors and pseudo-rigid body modes. 

 

• Lagrange Multipliers Method – require a version specific DMAP ALTER 

command. 
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Enforced Motion in Transient Response 

(Direct method) 
• The Direct method allows for direct specification of displacements, 

velocities, or accelerations using SPC/SPC1/SPCD data, eliminating 
the need to employ Large Mass or Lagrange Multipliers. 

 

• NX Nastran directly utilizes this enforced motion information in the 
equations of motion, partitioning and integrating them (i.e., transient 
analysis) in accordance with the type of motion specified. 

 

• Direct enforced motion is available in direct and modal frequency 
analysis (Solutions 108 and 111), direct and modal transient 
analysis (Solutions 109 and 112), and design optimization (Solution 
200) 

 

• Field 3 of the TLOADi and RLOADi cards has been changed from 
DAREA to EXCITEID.  
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Direct Method in Frequency Response 
• In frequency response the transient effects are assumed to be 

negligible, and the time-dependent nature of the loading can be 
expressed in terms of harmonic forcing functions.   

 

• Force response of the structure to these harmonic loads occurs at 
the same frequency, and in proportion to the magnitude of the 
applied loads. 

 

• When an enforced motion is applied instead of a harmonic force, the 
effect is similar, creating a response with proportional forces of 
constraint at the same frequency as that of the enforcing motion. 

 

• Any one of the enforced displacement, velocity, or acceleration must 
uniquely determine the other two (differ only by multiples of 
frequency), with resultant forces of constraint derived from a solution 
of governing equations. 
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Direct Method in Frequency Response 
• To illustrate this, an applied harmonic forcing function of the form: 

P(t) = P(ω)eiωt 

u(t)  = U(ω)eiωt 

will lead to the in-plane displacement: 

With the corresponding velocity and acceleration: 

u(t) = iωU(ω)eiωt ˙ 

ü(t) = -ω2U(ω)eiωt 

and 

yielding the equations of frequency response. 
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Direct Method in Frequency Response 
• Going into further detail, the frequency response equations are 

written after multipoint constraint partitioning operations have been 
performed leaving just the free (f-set) and constrained (s-set) 
degrees of freedom: 

Where Ps are the external loads applied to the S-Set and qs are the corresponding 

forces of constraint. 

 

If the constraints specify zero motion (Us = {0}), the solution for the free degrees-of-  

freedom may be obtained directly from the upper part of this equation: 

+ iω Mfs 

Mss 

Mff 

Msf 

-ω2 Bfs 

Bss 

Bff 

Bsf 

+  
Kfs 

Kss 

Kff 

Ksf 

Uf 

Us 

=  
Pf 

Ps + qs 

(-ω2Mff + iωBff + Kff) Uf = Pf 

And the corresponding constraint forces from the lower part: 

qs = -Ps + (-ω2Msf + iωBsf + Ksf) Uf  

Eq. 9-1 

Eq. 9-2 

Eq. 9-3 
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Direct Method in Frequency Response 
If enforced displacements, velocities, or accelerations are applied, Us ≠ {0} and the  

free degrees-of-freedom, from Eq. 9-1 are: 

(-ω2Mff + iωBff + Kff) Uf = Pf - (-ω
2Msf + iωBsf + Ksf) Us  

which corresponds with constraint forces: 

qs = -Ps + (-ω2Msf + iωBsf + Ksf) Uf + (-ω2Mss + iωBss + Kss) Us  

Eq. 9-4 

Eq. 9-5 

Comparing 9-4 and 9-5 with 9-2 and 9-3 shows that the enforced motion modifies  

the force applied to the f-set degrees-of-freedom.   

 

Had an enforced velocity been applied instead, the resultant applied displacement  

would differ by a factor of (1/(iω)).   

 

Had it been an applied acceleration, it would differ by –(1/ω2). 
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Direct Method in Transient Response 
• When the transient dynamic equations of motion are written in terms 

of displacement and its higher order derivatives, the solution of 

these equations must be performed in a stepwise integral fashion for 

very time step, t.    

 

• As with Frequency response, any enforced displacement, velocity, 

or acceleration must uniquely define the other two quantities for that 

degree-of-freedom with resultant forces of constraint derived from a 

solution of governing equations of motion at that particular time 

step(s) of interest. 

 

• Unlike Frequency response, higher-order displacement derivatives 

for the enforced degrees-of-freedom must be determined by finite 

difference, with lower-order quantities (for example, displacements 

and velocities for an applied acceleration) determined by numerical 

integration. 
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Direct Method in Frequency Response 
• Going into further detail, the transient dynamic equations of motion 

are written after multipoint constraint partitioning operations have 
been performed leaving just the free (f-set) and constrained (s-set) 
degrees of freedom: 

In the case of zero constrained motion, us = us = us = {0} and the solution for the free  

degrees-of-freedom may be obtained directly from this equation: 

+  
Mfs 

Mss 

Mff 

Msf 

Bfs 

Bss 

Bff 

Bsf 

+  
Kfs 

Kss 

Kff 

Ksf 

uf 

us 

=  
Pf(t) 

Ps(t) + qs(t) 

Mff üf + Bff uf + Kff uf = Pf(t) 

with corresponding forces of constraint from: 

qs(t) = -Ps(t) + (Msf üf + Bsf uf + Ksf uf) 

Eq. 9-6 

Eq. 9-7 

Eq. 9-8 

üf 

üs 

uf 

us 

˙ 
˙ 

˙ 

˙ 
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Direct Method in Frequency Response 
If enforced displacements, velocities, or accelerations are applied, us, us, üs ≠ {0}, and  

the solution for the free degrees-of-freedom from Eq. 9-6, are: 

with constraint forces: 

qs(t) = -Ps(t) + [Msf  Mss]         + [Bsf  Bss]         + [Ksf  Kss] 

Eq. 9-9 

Eq. 9-10 

As with frequency response, the effect of enforced motion is to modify the loads on 

the f-set, and the s-set forces of constraint   

Mff üf + Bff uf + Kff uf = Ps(t) + (Msf üs + Bsf us + Ksf us) ˙ ˙ 

˙ 

üf 

üs 

uf 

us 

˙ 
˙ 

uf 

us 
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Problem #7 

Direct Transient Response with 

Enforced Acceleration 
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Problem #7: Direct Transient Response 

with Enforced Acceleration 
For this problem, use the direct method to determine the transient response of the flat 

rectangular plate, created in problem #1, subject to a unit acceleration sine pulse of 

200 HZ applied to the base (node 23) in the z-direction.  A large mass of 1000 lb is 

applied to the base.  Use a structural damping coefficient of g = 0.05 and convert this 

damping to equivalent viscous damping at 200 Hz. 

Large Mass 

1000 lbs 
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Problem #7: Displacement Results 
T3 Translation for Node 23 (Base node) over duration of analysis 

D

i

s

p

l

a

c

e

m

e

n

t 

Time 
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Problem #7: Displacement Results 
T3 Translation for Node 33 over complete duration of analysis 

D

i

s

p

l

a

c

e

m

e

n

t 

Time 
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Problem #7: Velocity Results 
T3 Velocity for Node 23 (Base node) over duration of analysis 

Time 

Velocity 
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Problem #7: Velocity Results 
T3 Velocity for Node 33 over complete duration of analysis 

Time 

Velocity 
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Problem #7: Acceleration Results 
T3 Acceleration for Node 23 (Base node) over duration of analysis 

A

c

c

e

l

e
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n 

Time 
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Problem #7: Acceleration Results 
T3 Acceleration for Node 33 over complete duration of analysis 

A

c

c

e

l

e

r

a

t 

i

o

n 

Time 
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Problem #7: Direct Transient with 

Enforced Motion 

Time 

0 

0.02 

0.04 

 

Time 

0 

0.02 

0.04 

 

Time 

0 

0.02 

0.04 

T3 Displacement 

0.0 in 

2.525E-6 in 

2.525E-6 in 

 

T3 Velocity 

0.0 

-1.35554E-7  

-7.25978E-8 

 

T3 Acceleration 

0.103 

0.00016233 

-0.00013677 

Use these results for comparison (Node 23): 
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Problem #7: Direct Transient with 

Enforced Motion 

Time 

0 

0.02 

0.04 

 

Time 

0 

0.02 

0.04 

 

Time 

0 

0.02 

0.04 

T3 Displacement 

0.0 in 

4.59E-6 in 

7.1984E-7 in 

 

T3 Velocity 

0.0 

0.0012328 

0.00065997 

 

T3 Acceleration 

-0.0043797 

-1.47664  

1.24428 

Use these results for comparison (Node 33): 
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Problem #7a 

Direct Transient Response with 
Enforced Acceleration  

(Direct application of acceleration) 
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Problem #7a: Direct Transient Response 

with Enforced Acceleration (Direct) 
For this problem, use the direct method to determine the transient response of the flat 

rectangular plate, created in problem #1, subject to a unit acceleration sine pulse of 

250 HZ applied to the base (node 23) in the z-direction. No large mass is not required 

for this example.  Use a structural damping coefficient of g = 0.06 and convert this 

damping to equivalent viscous damping at 250 Hz.  Compare with results of Ex.7. 
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Random Response Analysis 

NX Nastran Dynamic Analysis 



Page 219 of 255 

Classification of Dynamic 

Environments 

Deterministic Random 

Simple 

Harmonic 

Periodic Transient 

Shock 

Spectra 

Stationary Nonstationary 

Ergodic 
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Introduction to Random Response 
• Random Vibration is vibration that can be described only in a 

statistical sense.  Its instantaneous magnitude at any time is not 
known; rather, the probability of its magnitude exceeding a certain 
value is given. 

 

• Examples include earthquake ground motion, ocean wave heights 
and frequencies, wind pressure fluctuations on aircraft and tall 
buildings, and acoustic excitation due to rocket and jet engine noise. 

 

• NX Nastran performs random response as post-processing to 
frequency response.  Inputs include the output from frequency 
response, as well as, user-supplied loading conditions in the form of 
auto- and cross-spectral densities.  Outputs are response power 
spectral densities (PSDs), autocorrelation functions, number of zero 
crossings with positive slope per unit time, and the RMS values of 
response. 

 

• Reference: Random Vibration in Mechanical Systems, by S. H. 
Crandall and W. D. Mark, Academic Press, 1963 
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Introduction to Random Response 
• There are several conventions used to define random analysis 

quantities. Care must be taken to use NX Nastran random response 

capabilities properly. 

 

• NX Nastran random analysis assumes ergodic processes, which 

means the excitations are stationary with respect to time. 

 

• The concepts of autocorrelation, auto-spectrum (power spectrum), 

cross-correlation, and cross-spectrum must be defined. 

 

• The mean square value and apparent frequency are the key 

statistical quantities to be gotten from Random Response. 
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Autocorrelation and  

Autospectrum 
• Autocorrelation function: 

Rj(τ) =   lim       ∫  uj(t)uj(t - τ)dτ 

T 

0 T 

1 

∞ T 

Rj(o) is the mean-square value of 

• Autospectrum function: 

Sj(ω) =   lim        ∫ uj(t)e
–iωtdτ 

T 

0 T 

2 

∞ T 

2 
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Autocorrelation and  

Autospectrum 
• Mean square value: 

uj(t)
2 = Rj(o) =       ∫  Sj(ω)dω 

0 2π 

1 
∞ 

• Apparent frequency N0 (zero crossings): 

∞ 

0 
∫  (ω/2π)2Sj(ω)dω 

∫  Sj(ω)dω 
∞ 

0 

N0
2 = 



Page 224 of 255 

Calculation of Linear System Response 

to Ergodic Random Excitation 

• From frequency response analysis: 

    uj(ω) = Hja(ω) ∙ Fa(ω) 

 where Hja(ω) is the frequency response or transfer function relating output uj 

to input Fa. 

• If there are several inputs, then: 

    

   uj(ω) = Hja(ω)Fa(ω) + Hjb(ω)Fb(ω) + … 

Fa(ω) 

Uj(ω) 
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Definition of Multiple Input-Output Spectral 

Relationship for a Linear System 
• In matrix form: 

uj(ω) = [ Hja(ω) Hjb(ω)… ] 

Fa(ω) 

Fb(ω) 

… 

• The output autospectrum is: 

Sujuj = T[ Hja Hjb … ] 

Fa(ω) 

Fb(ω) 

… 

[F*a(ω) F*b(ω) … ]  

H*ja(ω) 

H*jb(ω) 

… 

• The individual input spectra are: 

TFa(ω) F*a(ω) = Saa(ω) 

TFa(ω) F*b(ω) = Sab(ω) 

TFb(ω) F*b(ω) = Sbb(ω) 
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Definition of Multiple Input-Output Spectral 

Relationship for a Linear System 
• The multiple input-output spectral relationship is therefore: 

Sujuj(ω) = [ Hj]
T 

Saa 

Sba 

… 

where  [Hj]
T  = [ Hja Hjb … ] 

Sab 

Sbb 

… … 

… 

… 

 [ H*j]
 

 [H*j]  =
 

H*ja 

H*jb 

… 
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Definition of Multiple Input-Output Spectral 

Relationship for a Linear System 
• The input cross-spectral matrix is: 

[S]IN = [ Hj]
T 

Saa(ω) 

… 

It has the special properties: 

Sab(ω) 

… … 

… 

… 

Sba(ω) Sbb(ω) 

Sab(ω) = S*ab(ω) 

 

Saa(ω), Sbb(ω) = real ≥ 0 
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Definition of Multiple Input-Output Spectral 

Relationship for a Linear System 
• Commonly used special cases: 

• Single input analysis (fully correlated inputs) 

Sujuj(ω) =  Hja(ω) 2Saa(ω) 

• Uncorrelated multiple inputs 

Sujuj(ω) =  Hja(ω) 2Saa(ω) +  Hjb(ω) 2Sbb(ω) + …  
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Random Analysis as  

Implemented in NX Nastran 
• It is assumed that the output from the frequency response 

calculations is Hja(ω).  It does not calculate: 

     

    Hja(ω) = uj(ω)/Fa(ω) 

  

 If Hja(ω) is desired, use F(ω) = 1.0. 
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Random Analysis as  

Implemented in NX Nastran 
• Use the Model->Load->Dynamic Analysis command, the Load Set 

Options for Dynamic Analysis dialog box will appear: 

The Power Spectral 

Density data should be 

created in functional 

form and then selected 

from the PSD drop-down 

menu in the Random 

Analysis Options portion 

of the dialog box. 
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Random Analysis as  

Implemented in NX Nastran 
• Use the Model->Analysis command to create a Random Response 

analysis set using the Analysis Set Manager : 

Choose 6..Random Response 

as the analysis type. 

Determine what type of output is desired for Nodes and/or Elements.  

Choose Power Spectral Density Functions or Autocorrelation Functions 

or Both. 
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 Random Response XY Output 
Once the type of Output is determined, 

the specific Output requests are made 

in this dialog box. 

Choose existing group of 

nodes to retrieve requested 

output. (If Nodal results have 

been requested) 

Choose existing group of 

elements to retrieve requested 

output. (If Elemental results 

have been requested) 
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Correlation Table 
Only available when there are multiple subcases with multiple Load Sets.  Choose 

real and imaginary component factors of specific PSD functions to create a 

correlation table between the Excited Load Set and the Applied Load Set.  This 

Dialog box can only be found by in the tree structure of the Analysis Set Manager 

An Example of when this might be useful is when correlating between PSD load sets 

from four wheels of a vehicle riding on a rough surface. 
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Random Analysis as  

Implemented in NX Nastran 

Many times, no other 

Output needs to be 

requested other than the 

PSD functions and the 

Autocorrelation Functions 

for Random Response 

Analysis. 
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Random Analysis 

Recommendations 
• Most spectra are given as a log function.  Use equation 

features on the function form if the PSD is given in log scale. 

 

• Always generate the output PSD at the input location if 

possible 

 

• Plot the output PSD.  Do not use the summery output blindly. 

 

• Use several frequencies in the vicinity of each mode. 

 

• For low frequencies (<20 Hz), use many frequencies since the 

displacement spectra is changing rapidly for a constant input 

acceleration. 
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Problem #7a 

Direct Transient Response with 
Enforced Acceleration  

(Direct application of acceleration) 
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Problem #7a: Direct Transient Response 

with Enforced Acceleration (Direct) 
For this problem, use the direct method to determine the transient response of the flat 

rectangular plate, created in problem #1, subject to a unit acceleration sine pulse of 

250 HZ applied to the base (node 23) in the z-direction. No large mass is not required 

for this example.  Use a structural damping coefficient of g = 0.06 and convert this 

damping to equivalent viscous damping at 250 Hz.  Compare with results of Ex.7. 
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Shock and Response 

Spectrum 

NX Nastran Dynamic Analysis 



Page 239 of 255 

Response Spectrum 
• Response spectrum depicts the maximum response of a SDOF 

system as a function of its resonant frequency for base 
excitation. 

Resonant Frequency (Hz) 

This Graph: 

Response 

is generated from: 
x(t) 

FN = 0.0 12 2.0 FMAX 

UB(t) 

Point on Larger, vibrating structure 

Response computed for Transient Analysis 
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Response Spectrum 
• The peak of each SDOF oscillator is calculated from its X(t).  The 

oscillator base motion UB is derived from the force or base 
excitation applied to a larger structure. 

 

• An example: An earthquake time history is applied to a power plant.  
Response Spectra are calculated at the locations of the floors to be 
used in the design of components (machinery, piping systems, etc.) 

 

• An implicit assumption is that the oscillator’s mass is very small 
relative to the larger, vibrating mass.  Therefore, no dynamic 
interaction occurs between the two.  (Consequently, the response 
spectrum analysis is decoupled from the transient analysis). 
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Response Spectrum 

• Analysis is repeated for several damping values to generate a 

family of curves. 

Resonant Frequency (Hz) 

Response 

Damping applies to each oscillator, not the vibrating structure 

1 

2 

3 

1 damping = 0% critical 

2 damping = 3% critical 

3 damping = 5% critical 
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Response Spectrum 
• Maximum displacement response from X(t) is calculated for each 

oscillator.  The maximum relative displacement between each 
oscillator and its base (a point on the vibrating structure) is also 
computed. 

   X = maximum inertial (absolute) 

   Xr = maximum relative 

 

• Relative velocity and absolute acceleration are approximately 
related to the relative displacements by 

 

   Xr = ωXr  

   X = ω2Xr 

 

• For design, useful variables are Xr, Xr, and X.  Design spectra are 
usually in terms of these variables. 

˙ 

¨ 

˙ ¨ 



Page 243 of 255 

Response Spectrum 
• Response Spectra may be generated in any transient solution 

(SOLs 109, 112). 

 

• The transient response for selected DOFs in model is used as the 
input time history for the generation of the response spectra curves. 
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Response Spectrum Generation 
• Define Functions using Model->function command 

Function to Define 

Oscillation Frequencies 

Function to Define 

Oscillation Dampings 
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Response Spectrum Generation 
• Use the Model->Load->Dynamic Analysis command, the Load Set 

Options for Dynamic Analysis dialog box will appear: 

Function to Define 

Oscillation Frequencies 

Function to Define 

Oscillation Dampings 
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Response Spectrum Generation 
• Response Spectrum Specific dialog boxes using the Analysis set 

manager, Modal->Analysis command. 

Define Analysis Type as 

5..Response Spectrum 

Request NASTRAN Output 

for Response Spectrum 

Analysis 

Choose existing group of 

nodes to retrieve requested 

output. 
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Applying Spectra 

Available in Solution 103: 

 

• “Poor Man’s Transient.”  The input spectra are used to determine 
the peak response of each mode. 

 

• These peak modal responses are combined to obtain the system 
response (timing of each mode’s peak is not known). 

 

• Three methods of combining the modal responses are available 
(ABS, SRSS, NRL) 
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Applying Spectra 

Procedure: 

 

• A model of the structure to be analyzed is created with the input 
points identified as ‘SUPORT’ DOFs. 

 

• A “large mass” (usually 103 to 106 times the structural mass) is 
attached to the ‘SUPORT’ DOFs. 

 

• System modes are obtained for the modal (including 0.0 Hz modes) 
with the ‘SUPORT’ DOFs unconstrained. 

 

• This approximates the “cantilevered” modes of the model attached 
to the “exciting” structure. 
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Applying Spectra 

• The 0.0 Hz modes (Dm) approximate the ‘static’ motion the model 
experiences when the supporting structure moves statically. 

 

• “Participation Factors” (PF) are calculated using the following 
expression: 

    Ψ = ΦTMDm 

 

• PF is used in conjunction with the spectra described as shown in the 
input section to calculate the peak response for each mode. 

 

• Data recovery quantities (displacements, stresses, forces, etc.) are 
then calculated for each mode based on its peak motion. 

 

• These quantities are then combined for the modes using the 
selected method (ABS,SRSS,NRL, NRLO) and the results are 
printed. 
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Applying Spectra 

• Xr response of a single DOF oscillator due to the base motion is 
calculated as follows: 

 

    Xr + gωXr + ω2Xr = ür(t) 

 

• The actual transient response at a physical point is 

 

    uk(t) = ∑∑ΦikΨirΧr (ωi, gi, t) 

 

Absolute Value Rule (ABS) option: 

    uk = ∑∑ Φik   ΨirΧri (ωi, gi) 

 

where   Χri (ωi, gi) = max  Χri (ωi, gi, t) 

 
and i represents a mode 

and r represents a direction 

¨ ˙ 

i r 

~ 

i r 
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Applying Spectra 

Square Root of the Sum of the Squares Rule (SRSS) option: 

 

    uk =     ∑(Φikξi)
2 

 

Where the average peak modal magnitude, ξi is 

 

    ξi =     ∑(ΨirΧr (ωi, gi))
2 

 

U.S. Navy Shock Design Modal Summation Convention (NRL) option: 

 

    uk =  Φjkξj  +   ∑(Φikξi)
2 

 

where Φjkξj  is the peak magnitude 

i 

~ 

r 

~ 

~ 

i ≠ j 
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Applying Spectra 

• NRLO refers to the NRL method used in version 69 of MSC Nastran.  

The NRL was updated slightly in version 70 to adhere to NAVSEA-

0908-LP-000-3010 specification. 

 

• The ABS rule is the most conservative – it assumes that the modal 

responses all achieve their peak response at the same time and with 

the same with the same phase (this rarely happens), therefore it 

usually over-predicts the response. 
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Applying Spectra 

• Modes that are close in frequency may have their peak response 

occur at the same time (and with the same phase).  The SRSS and 

NRL methods contain a provision to sum modal responses via ABS 

method for modes that have closely spaced natural frequencies.  

“Close” natural frequencies are defined by frequencies that meet the 

following in equality: 

    fi+1< CLOSE * fi 

 

• The value of CLOSE is defined by PARAM,CLOSE (the default is 

1.0). 

 

• The modal summation option is set via PARAM,OPTION (ABS is 

default).  Both PARAM,OPTION and PARAM, CLOSE may be set in 

any subcase allowing for summation by several conventions in a 

single run. 
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Response Spectrum Application 
• Create a Function vs. Damping function using the “results” of the 

Shock Spectrum Generation 
Use these functions to create 

a Function vs. Damping 

relationship for the Spectrum 

Function ID. 
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Response Spectrum Application 
• Response Spectrum Specific dialog boxes using the Analysis set 

manager, Modal->Analysis command. 
Define Analysis Type as 

2..Normal Modes/Eigenvalue 

Choose the type of Spectrum and 

a Spectrum function ID (a scale 

factor can also be added) 

Choose a modal combination 

method (ABS, SRSS, NRL, 

NRLO) and a “closeness” factor. 

Chose a constraint set to be 

the SUPORT set  and  

Choose a damping function 

for modal damping 


