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FINITE ELEMENT ANALYSIS

A
nalysis work is rarely done because
we have spare time or are just curi-
ous about the mechanical behavior
of a part or system. It’s typically per-

formed because we are worried that the
design might fail in a costly or dangerous
manner. Depending on the potential fail-
ure mode our anxiety might not be too
high, but given today’s demanding OEMs
and litigious public, the task could involve
high drama with your name written all
over it.

If you’ve done analysis, you’re com-
fortable with the concepts involved in sta-
tic stress analysis; you define the loading
and boundary conditions, and identify
success with a model bathed in soothing
tones of gray and blue with nary a red re-
gion to be seen. However, in the back of
your mind you might wonder about that
large vibrating motor or the plant ma-
chinery that hums at a constant 12.5Hz.
Alternatively, maybe you have an elec-
tronics enclosure that is to be mounted on

the side of a building in an earthquake-
prone region and your boss is question-
ing your bracket design. Whatever the
case, you have the static world under con-
trol. What about the rest?

In this series of articles, we’ll briefly re-
view dynamic analysis fundamentals and
see how they can easily be applied to
make sure your design remains strong and

rock solid in the face of dynamic events,
whether simple vibrations, earthquakes,
or even rocket launches.

KEEPING IT SIMPLE
Static stress analysis is the proverbial
“walk-in-the-park” for most people do-
ing analysis work. It feels straightforward:
we apply a fixed load and examine the re-
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Figure 1: First vibration mode shape for an NCAA aluminum baseball bat is shown here.
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sulting static behavior (generally linear,
given linear material behavior). We get
back some nice clean stresses and deflec-
tions that hopefully match our intuition
for how our design should behave. While
there might be a few hiccups along the
way, the end result usually appears logical
to our mechanical minds.

The dynamic behavior of a structure
can also be viewed in the same light if we
just shift our perspective a bit and think in
terms of how our structure should natu-
rally deform during a dynamic event.
Whenever a structure is hit or given some
sort of time-varying load (transient or
steady-state), it will respond to this load
with a very characteristic behavior. If the
load is not incredibly massive and the
structure doesn’t blow up or plastically
deform as a result, then the dynamic re-
sponse of your structure will most likely
be linear. That is to say, if the load is re-
moved and the structure is given a chance
to calm down, then it will return to its un-
deformed state. This is the same concept to
use in linear static stress analysis: when
the load is removed the stress in the struc-
ture goes back to zero.

What exactly do we mean by character-
istic dynamic behavior? All structures have
natural or characteristic modes of vibra-
tion. The sound or note from a guitar string
is all about its natural frequency of vibra-
tion. When a guitar string is plucked it will

vibrate at a certain note or tone. This note
is at the string’s characteristic frequency.

Another example is aluminum baseball
bats. The best aluminum baseball bats are
designed with characteristic vibrations
that attempt to limit the sting that occurs
when you hit a ball outside the sweet spot
on the bat. Each frequency creates a phys-
ical deformation or shape, and the total
dynamic response of the bat is a combi-
nation of all its characteristic mode shapes

(see Figures 1 and 2).
In finite element analysis (FEA), these

natural frequencies are called eigenvalues
and their shapes are noted as eigenvec-
tors or eigenmodes. This nomenclature is
rooted in German and the word eigen de-
notes “characteristic” or “peculiar to” and
came into common use with mid-19th cen-
tury mathematicians. With dynamic analy-
ses, you’ll also see the terms normal
modes and normal modes analysis. The
use of the word normal prior to mode is
just another way to say natural, charac-
teristic, or eigen. When describing mode
shapes, our preference is to just say normal
modes since they represent the inherent
natural response of the structure.

A BEAM AS ONE EXAMPLE
If we picture a simply supported beam
(fixed at one end), its natural mode shapes
are determined by its geometry while its
frequency of motion is fixed by its stiff-
ness and density. Got all of that? Take a
look at the graphic of our beam for its first
three modes (see Figures 3 and 4). The first
three modes of the beam are well-defined
but come in pairs to cover all permissible
ranges of motion for that beam. In 3D, the
first mode can oscillate within a 360-de-
gree envelope around its longitudinal axis.
Numerically, the eigen solution process
just gives us the two orthogonal modes,
but it implies the full 360-degree envelope.

All structures have a nearly infinite
number of permissible shapes or eigen-
values/eigenmodes. Fortunately, only the

Figure 2: Second vibration mode shape is shown here for an NCAA aluminum baseball bat.

Figure 3: Undisturbed simple beam, plus two of the first vibration mode shapes (two directions of motion).
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lower frequencies dominate the response
of the structure so we can typically ignore
the higher frequencies. A rule of thumb is
that the first three modes capture the ma-
jority of the response of the structure and
therefore one can safely ignore the higher
frequencies. (The reasoning for this state-
ment will be given in Part II of this series).

The frequency of these modes or their
eigenvalues is dependent upon the stiff-
ness and the density of the beam. The fre-
quency equation for structures can thus
be written as:

� = K / m

where K is the stiffness of the structure
and m is the mass. This wonderfully sim-
ple equation represents a great deal of in-
formation about the system. The classic
way to graphically describe this equation
is with a mass suspended by a spring,
where the mass block can only move up
and down or has one degree of freedom
(DOF) in FEA parlance. The eigenmode
of this system is up and down.

PAPER MILL DESIGN EXAMPLE
In commercially interesting structures, the
same equation holds. The eigenvalue of
the structure is still determined by

� = K / m

For example, consider a forming board
used within a paper mill. The structure is
10 meters long and made of stainless steel.
The paper mill has an operating frequen-
cy of around 9Hz. If the structure’s nat-
ural frequency is near this operating fre-
quency, it will quickly resonate and tear
itself apart. More importantly, it will also
take the multi-million dollar paper mill
along with it (see Figures 5 and 6).

The parameters of the original design
placed the first mode at 8.4Hz, which
would have been a disaster. The forming
board is manufactured from 9.5mm-thick
stainless-steel plates, so our first design
inclination was to simply increase the
thickness of the plates. We pursued this
approach for several days but as we in-
creased the thickness, the mass of the
structure also increased almost in lock-
step with the stiffness (see above equa-
tion). At the end of all this head banging,
we got a marginal improvement (~11Hz
resonance) with 25mm-thick plates, but
it was going to cost a fortune to manu-
facture.

At this point we stepped back from
our rush to find a solution and thought
about how stiffness is developed in long
slender structures. We realized that we
had very little shear transfer between the
top and bottom surfaces of the forming
board. This insight led us to add diagonal
steel rods that would connect the top and
bottom planes and allowed us to keep

the thickness of the plates at 9.5mm. The
new design tested out on the computer
with a first mode frequency of 13Hz. With
the eigenvalue of the forming board now
significantly higher than the operating
frequency of the mill, resonance is im-
possible and the system is dynamically
stable. Additionally, the thinner plates
(9.5mm instead of 25mm) meant it was



more than half the cost of the first, mar-
ginal redesign.

DYNAMIC LOAD CONSIDERATIONS
When a structure is loaded in a transient
or time-varying fashion (e.g., when an
electric motor creates a constant, sinu-
soidally varying load), if the eigenvalue
of the structure is lower or higher than
the excitation frequency, the structure will
just behave as if the load was applied sta-
tically. Let us say that we have this struc-
ture with an eigenvalue at 10Hz and it is
whacked by a transient (e.g., half sine-
wave with frequency of 10Hz), we would
expect the structure to vibrate subsequent
to the hit and then gradually return to its
static zero-stress condition.

However, if the structure's dynamic
load is time-varying (e.g., sine wave at
10Hz), the structure will resonate. If little
damping is present (think metal or stiff
plastic structures), then we may see the
classic harmonic resonance that caused
the collapse of the Tacoma Narrows
Bridge in 1940. What kills structures is
resonance, and the worst kind of reso-
nance occurs when the structure sees the
excitation load over and over again. The
most effective way to eliminate this wor-
ry is to design your structure to have low-
er or higher natural frequencies than its
operational frequency; this goal is the
dominant reason for performing an eigen
analysis.

THE FINAL MATH
In our prior discussion we haven’t men-
tioned anything about the magnitude of
an eigenmode. That is to say, we have dis-
cussed its frequency and its shape but left
out any description of its magnitude. In
eigen analysis (normal mode analysis) no
load is applied to the structure. Without a
load (e.g., a force or pressure), a predic-
tion of the actual eigenmode is impossi-

ble. The extraction of the eigenmode (the
shape of the permissible deformation
mode) involves a fancy piece of math that
is commonly available in a multitude of
textbooks. The core thought is that we are
solving the dynamic equation:

{f(t)} = [m]{ x’’(t)} + [C] {x’(t)} + [K] {x(t)}

If damping [C] is ignored (a good as-
sumption for a lot of designs) and the ap-
plied force f(t) is set to 0.0, the equation
reduces to this more manageable formula:

[m]{ x’’(t)} + [K] {x(t)} = 0

This is the key equation for eigen analysis
and states that only the mass and the stiff-
ness of the structure control its natural
modes.

To solve this equation see your favorite
math handbook. The gist of the discus-
sion is that the eigenvalue of the structure
boils down into this elegant formula:

� = K / m

And since no forces are used in the
calculation of the eigenvalue, its associat-
ed eigenmode is dimensionless. Your FEA
program then scales the eigenmode such
that the maximum displacement within
each mode shape is near 1.0 or some rela-
tive value tied to the mass of the struc-
ture. When these eigenmodes are dis-

20 DE Apr 2008 deskeng.com

FINITE ELEMENT ANALYSIS
F E AT U R E

Figure 5: Mode 1 of vibrating paper-mill forming board

Figure 4: Second and third vibration modal-shape pairs for a simple supported beam.



played within an FEA program, we see an
imaginary magnitude; this visual can be

problematic for many initiates who are
first venturing into the eigen world of dy-

namic analysis, but we will discuss the
implications in Part II of this series.

MODE ANALYSIS ESSENTIAL CHECKLIST
Determine what type of loading you may
have on your structure and whether or
not that loading might set up a resonant
condition. Try to determine your loading
frequencies and ensure that they fall out-
side of the eigenvalues of your structure.

Run an eigen analysis and look at the
first three normal mode frequencies. See if
they fall within your danger zone.

If the normal mode frequencies are out-
side your loading frequencies then stop.
You are done and all is good.

If your normal mode frequencies are
within your range of interest and you can’t
redesign around them, then stay tuned for
our future articles. We will show that
maybe it isn’t that bad after all. �

George Laird, Ph.D., P.E. is a mechanical engi-
neer with PredictiveEngineering.com and can be
reached at FEA@PredictiveEngineering.com. Send
your comments about this article to DE-Edi-
tors@deskeng.com.
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Figure 6: Mode 2 of vibrating paper-mill forming board
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In part I of this series (DE April 2008,
p. 16), we explained the concept that
every structure has natural frequencies
of vibration (eigenvalues) and that these

natural frequencies have specific deforma-
tion shapes (eigenmodes or normalmodes).
We also took a swipe at how one would
use this information in the structural de-
sign world by noting that excitation fre-
quencies outside of a structure’s first couple
of eigenvalues means it will behave stati-
cally stable.We nowwant to expand upon
this theme and demonstrate how this sim-
ple form of analysis can be leveraged to
uncover how your structuremight behave
under dynamic loading.

THE DOMINATORS: MODES WITH MASS
An interesting fact about normal modes
analysis is that we can associate a percent-
age of the structure’s mass to each mode.
With enoughmodes, you get 100 percent of
the mass of the structure, though for com-
plex structures this canmean hundreds of
modes. The common thought is that if you
capture 90 percent of themass of the struc-
ture that will be good enough. For now,
we’ll start classically and then show what
this concept means in a real-world engi-
neering situation.

We use the supported beam because it is
simple to visualize, simple to formulate,
and best of all, simple to draw on a white
board. In Figure 1 (next page), we show a
quick example of the first threemodes of a
simple supported beam alongwith the per-
centage of mass associatedwith themode.
The first mode dominates with 82 percent
of the mass of the beam swinging up and

down. The second and third modes con-
tribute a little bit of mass but nothing like
what we saw in the first mode.

All of thesemodes operate in one direc-
tion. In the real world, the mass fraction is
associated with all six degrees of freedom
within a particular natural frequency.What
thismeans is that if we excite this firstmode
in the vertical direction (the direction of the
mass fraction), then the structurewill move
with 82 percent of its mass behind this
mode. If we think like Newton and realize
that F=m*a, thenwe can visualize the dom-
inance of this mode and the huge forces
that can be generated at resonance.

PEA POD TRANSPORT
Let’s leverage this information in a couple
of typical engineering problems. Manu-
facturers use vibrating conveyors to move
materials ranging from pea pods to lumps
of coal. One such vibrating conveyor is
shown above. It moves pea pods within a

food-processing plant using a vibratory
motor that creates a sinusoidally varying
force that is aligned down the axis of the
conveyor (y-axis). This force causes the con-
veyor to swing forward and up on its fiber-
glass laminate springs.

When operating at its resonant fre-
quency, the conveyor tosses the pea pods
forward and upward in a gentle swing-
ing fashion. The material transport rate is
determined by its operating frequency and
the length and angle of the fiberglass
spring laths.

Afundamental problemwith this type of
conveyor is that during startup as the vi-
bratory motors spin up to speed, nonop-
erating modes get excited, often causing
the conveyor to tear itself apart before it
reaches the target operating frequency. Our
eigen analysis of the conveyor shows that it
has to pass through three modes before
reaching its operating frequency at 18Hz.
Table 1 shows a brief summary of the data

The motor mount for this vibrating conveyor is the mass of flexible metal plates hanging off the end
of the conveyor. Yellow elements are fiberglass laminate springs; the motor is not shown.

B Y G E O R G E L A I R D
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for Everyone: Part 2
> Vibration analysis can show detailed structual behavior under dynamic loading.
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harvested from this analysis.
Along with this hard data we have the

shapes of these four modes shown in Fig-
ure 2. We now have a complete picture of
the dynamic mechanical behavior of the
conveyor system.

Although the vibratorymotor has to dri-
ve through threemodes to reach the target
frequency of 18Hz, it has three things in its
favor: the applied force is along the y-axis;
the mass fractions of the first three modes
are small (less than 6 percent); and the dom-
inant directions of the first threemodes are
not alignedwith the forcing function. Thus,
with a basic eigen analysis, one can ap-
prove the design of a very complex engi-
neering system.

MAKING YOUR RIDE AS SMOOTH AS SILK
Ever wonder what makes a quiet ride in
a motor vehicle? It has to do with avoid-
ing modes that might be driven to reso-
nance; that is to say, keeping the struc-
ture dynamically static in its mechanical
behavior.

In an analysis of amodernmotor home,
imagine the FEAmodel is highly idealized
using beam elements for the small struc-
tural tubes, plate elements for themain lon-
gitudinal beams, and lots ofmass elements
to represent the engine, air conditioners,
water and diesel tanks, and passengers.Af-
ter a normal modes analysis, we have 45
modes ranging from 2.3Hz to 15Hz.

Trying to figure out which mode will
cause trouble is essentially impossiblewith-
out knowing something about the mass
participationwithin eachmode. To help us
sort through this mess, we can graphically
show themass participation sums for the x,
y, and z directions.

Ride smoothness in many cases is just
the “hop” in the structure or the bounce in
the y-direction. The biggest bounce of in-
terest occurs at mode 21 where the mass

participation jumps from around 23 per-
cent to 43 percent (20 percent of themass is
moving upward at mode 21). If we inves-
tigate thismode a little deeper, wewill find
out that the entire coach frame is bucking
upward at a frequency of around 10Hz.We
now have a pretty good picture of what to
avoid— anything around 10Hz.

Luckily, standard road-noise rarely ex-
ceeds anything higher than 5Hz. Given our
current knowledge of the mode behavior
and its mass participation fractions, we are
in good shape for a smooth and stable ride.

DESIGNING THE STIFFER STRUCTURE
One of the realities of a normal modes
analysis is that you don’t get any informa-
tion about the magnitude (deformation or
stress) of the actual response. This is due
to the fact that you are not applying a load
to the structure.While this poses some lim-
itations, we can also use something called
the strain energy density to estimatewhere
the structure is the most flexible or the
“weakest.”

The mode shape of the structure repre-
sents the permissible deformed shape,
which directly correlates to the strain en-
ergy pattern. Elements with large values
of strain are those that most directly affect
the natural frequency of that mode. If you
can lower the strain energy, you’ll increase
that frequency.

Figure 3 (bottom page 66, left) shows an
electronics enclosure that is attached to a
couple of brackets. The strain energy den-
sity for the first mode is contoured over
the brackets. In this design, the brackets
are bolted onto the C-channel used as the
attachment point to the building. The de-
sign goal is to survive a rather severe earth-
quake (GR-63-Core Zone 4 specification).

To simulate the earthquake the structure
is shaken in all three axes. The first mode at
7Hz has 45 percent of the mass swinging
back and forth in the Z-direction as corre-
lated by the high strain energy shown in

Figure 1: This illustrates a vibration analysis of a simply supported beam. From left, the normal mode shows a specific deformation shape where 82
percent of the mass of the beam swings up and down; the second and third modes of the beam only occur at much higher frequencies. In the second,
only 10 percent of the mass deforms this way, and in the third, only 3 percent. These modes have very little effect on the overall behavior.

Continued on page 66

Figure 2: Four vibrational modes of conveyor belt pictured from the left as it ramps up in frequency to final operating value. Mode 1 shape at 3.5Hz has
a mass fraction of 5% along the x axis; Mode 2 shape at 13Hz has a mass fraction of 5.8% along the z axis; Mode 3 shape at 16Hz has a mass fraction of
1% in a y axis rotation; and the Mode 4 shape at 18Hz has a mass fraction of 60% along the y axis.

Mode Eigenvalue Mass
Fraction

Dominant
Direction of
Mass Fraction

1 3.5Hz 5% x-axis
2 13Hz 5.8% z-axis
3 16Hz 1 % y-axis rotation
4 18Hz 60% y-axis

Table 1: Summary of Eigen Analysis Results



Figure 3 ( above center) at the flex points of
the bracket. To improve this design, we
only need to address the high-strain ener-
gy locations. This is done by capping the
ends of the bracket. With the bracket rein-
forced, the strain energy is reduced (as
shown in Figure 3, above right) and the fre-
quency jumps to 10Hz.

ADVANCED MODAL ANALYSIS CHECKLIST
Don’t panic when you have eigenvalues
right on top of your operating frequencies.
Only natural frequencies with significant
mass participation factors are important.

Eigenmodes have directions as do their

mass participation fractions. Investigate
these directions and see if they corre-
spond to your forcing-function direction.
If they don’t (let’s say they’re orthogo-
nal), then the structure will remain dy-
namically stable.

If you need to stiffen up your structure,
look at the modes where the mass partici-
pation is high and then investigate their
strain energy density. Modify your struc-
ture to lower the strain energy in high-en-
ergy sections and you’ll see a significant
increase in your eigenvalues.

Be methodical and look at your struc-
ture from all directions. The secret to mak-

ing a dynamically stable structure is to tie
everything together: eigenvalue (themode
frequency); mode direction (i.e., mode
shape); mass participation fraction; mass
participation direction; and strain energy
density. If you remain cognizant of all of
these factors, you will have a good degree
of success in not being surprisedwith aber-
rant or disastrous dynamic behavior in
your structure.�

George Laird, Ph.D., P.E. is a mechanical engineer
with PredictiveEngineering.com and can be reached
at FEA@PredictiveEngineering.com. Send comments
about this article to DE-Editors@deskeng.com.
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Continued from page 63

Figure 3: Left) Strain energy density of initial design of electronics housing mounting brackets indicating areas most likely to affect natural frequency of
first mode; Center) Bracket subjected to simulated earthquake (GR-63-Core Zone 4 spec) showing high strain energy of first mode at 7Hz at flex points
of bracket; Right) Revised bracket design with capped ends displays much lower strain energy and pushes first natural frequency to 10Hz.
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Linear Dynamics
for Everyone
> Part 3: Extracting real quantitative data to
anticipate everything from earthquakes to rocket launches.

If you’ve kept up with this series of ar-
ticles, you now know more about the
dynamic behavior of structures than
95 percent of your peer group within

the design and engineering world. And
after reading about how vibration analysis
reveals key information about structural
behavior (see DE, April and May 2008),
the terms “natural frequencies, normal
mode shapes, mass participation factors,
and strain energy” have become integral
to your vocabulary.

Up to this point the discussion has cen-
tered on qualitative terms about the me-
chanical response of structures due to dy-
namic loading. In this last part, we'll show
how to extract real quantitative data (i.e.,
displacements and stresses) from a sim-
ple normal-modes analysis.

DOING IT ON THE CHEAP
The dynamic response of a structure is de-
rived from its individual normal modes. If
you hit your structure, its dynamic re-
sponse is formed by the summation of its
individual modes. Mathematically, we
know that each one of our normal modes
has a frequency, a mode shape, and a bit of
mass associated with that shape (a mass
participation factor). All of this data is de-
rived from the basic equation of motion:

ma+kx = 0
From this equation, the standard linear
dynamics solution can be derived as:

v = K / m
where v is the frequency or eigenvalue of
the system. Since no forces are involved
in this equation we can't have any real dis-

placements or stresses.
If wewant real data, we need real forces

as in: (ma+kx = F).
The brute-force approach is to solve the

model in the time domain. A time-based
displacement, force, or acceleration load is
inserted into the model and then the com-
puter makes a few thousand solves. At
some later date, we then wade through
piles of output data (remember, we are

doing a complete solve at each time step)
to figure out what went wrong, when, and
where. This can be a daunting task and is
often just plain impractical.

If the loads are frequency-based (dis-
placement, force, or acceleration as a func-
tion of frequency), then the door is wide
open to all sorts of very numerically effi-
cient solution strategies. First you perform
a normal modes analysis and then apply a

This is a satellite FEA model showing instrumentation attachment points (black squares) for
idealized mass elements as defined by a center of gravity connected by rigid links (orange lines).
The model is driven with an input power spectral density (PSD) function.
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frequency-based load. A linear solve is
made only at each normal mode or eigen-
value. The resulting displacements and
stresses can be viewed individually or
summed in some fashion to arrive at a
combined damage response to the load-
ing. The technique is extremely useful be-
cause you have reduced the number of
solves from thousands to just a handful.
Although we can't use this technique for
every type of structure (linear behavior
only), when you can use it, you have the
ability to quickly gain insight into the dy-
namic behavior of the structure on the
cheap (minutes versus days).

MODAL FREQUENCY SWEEP (MFS)
Frequency-based loads are more common
than you might think. Our previous ex-
ample was of a vibratory conveyor. Since
that was rather straightforward, let's look
at something a bit more complex.

Figure 1 shows a high-precision opti-
cal-mirror assembly that will be attached
to an airplane or helicopter. Airborne
structures provide a vibration-rich envi-

ronment with their high-speed gearbox-
es, jet turbines, rotating blades, etc. To as-
sess the robustness of the design, you can
perform a virtual shaker-table experiment.
Our desired output is the deflection re-
sponse at the focal point of the mirror un-
der severe vibration.

Without having to build themirror, you
can input a sin sweep of 1g from 200 to
3000Hz to the model, and see what gets
amplified or harmonically driven in the
structure. Figures 2a and 2b show the out-
put graph of acceleration and displacement
as a function of frequency for the sin sweep.

The mirror system has eigenvalues at
710, 1292, 1570, 1996Hz, etc. But as shown
in Figures 2a and 2b, only the mode at 710
Hz creates any real sympathetic acceler-
ations and displacements. This is logical

since this mode is aligned with the forcing
function and has a mass participation fac-
tor of 35 percent in the direction of the
forcing function. In a way, we knewwhat
the results would be before we ran the
analysis. But now we have real numbers.

POWER SPECTRAL DENSITY (PSD) ANALYSIS
Satellites are expensive and failure is even
more expensive. During launch (Figure 3a)
they get pounded by a broad and chaotic
spectrum of vibrations (accelerations) from
the rocket motor, stage separation, acousti-
cal noise, etc. No single acceleration fre-
quency dominates and there are multiple
layers of noisy events that occur randomly.

To numerically model such loading, a
statistical approach is used where acceler-
ation measurements are converted into a
power spectral density (PSD) functionwith
units of acceleration squared against fre-
quency (Figure 3b). Once again, we have a
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Figures 2a and 2b: Virtual shaker-table results of acceleration and displacement at the focal point
of the large airborne-mounted mirror showing acceleration in cm per second on the y-axis of
2a and displacment in cm on the y-axis in 2b.

Figure 3a: A rocket launch and other chaotic
events create vibration (acceleration) spectra
that are best idealized in a statistical sense
via power spectral density functions.

Continued on page 70

1) If you review the normal mode re-
sponse, its modes and its mass participa-
tion factors, you might not need these
more advanced techniques.
2) If you go ahead with this analysis, con-
vert all loads into the frequency domain.
3) Results from modal frequency analy-
ses are in the frequency domain. They pro-
vide a virtual snap shot of your structure
operating at steady state at the forcing
frequency of interest.
4) Results from power spectral density
analyses are averages of the forced re-
sponse. They are estimates of the highest
possible displacements and stresses.

ANALYSIS
CHECKLIST

Figure 3b: The rocket acceleration measure-
ments are converted into a power spectral
density function with units of acceleration
squared against frequency. The applied
load is based on frequency.

Figure 1: This is an image of an advanced opti-
cal platform for an airborne system placed
on a virtual shaker table.
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loading curve where the applied load is based on frequency.
The statistical nature of this calculation comes from the con-

version of the acceleration time history data to the PSD func-
tion. The PSD amplitudes are actually root mean square (RMS) ac-
celeration values that are fitted to a standard statistical
distribution where the mean value is zero and what is plotted is
the standard deviation versus frequency. As non-intuitive as this
may sound, it is a very effective way to convert chaotic, random
noise into a numerically useful load-function.

Another unique aspect of the PSD analysis is that all of the
modes of the structure are assumed to be vibrating or excited by
the PSD function simultaneously. Somewhat like a bell being
rung, the output response is a summation of the amplitudes of all
of the frequencies of the structure within the range of interest.

As an example, an FEAmodel of a satellite (see page 18) has var-
ious instrument payloads represented as mass elements. These
payloads are attached to themain structure of themodelwith rigid
links. Inmany cases, the utility of a PSD analysis is to determine the
transfer function of the structure or how the satellite frame will
transmit acceleration into the instrumentation packages.

The resulting transfer function is just another PSD. We then
use this output to perform amore detailed PSD analysis on the in-
strumentation package to determinewhether it will survive launch.

The dominant mode of the satellite is around 70Hz (Figure 4)
and the output PSD function reflects this fact with a huge spike
at this frequency (marked with a star). If we knew that our in-
strumentation package was susceptible to frequencies at 70Hz,
our design solution would be to develop a stiffer satellite frame
that would not have a dominant normal mode at 70Hz. Even
without the PSD analysis, a clear understanding of the normal
mode frequencies, their mode shapes, and corresponding mass-
participation factors allows you to make valid predictions.

Now you have the concepts, the vocabulary, and the big picture
for operating in the world of linear dynamics. A simple modal
analysis can put you well on the way to successfully meeting
your structural engineering challenges. Why not give it a try?�

George Laird, Ph.D., P.E. is a mechanical engineer with PredictiveEngineer-
ing.com and can be reached at FEA@predictiveengineering.com. You can send
comments about this article to DE-Editors@deskeng.com.
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Figure 4: The output spectral density plot of the satellite analysis indi-
cates the location of the first normal mode with the star marking 70Hz.
The chart shows frequency on the x axis and PSD (g-2/Hz) on the y axis.
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